<Supplementary Information>

Atomically Miniaturized Bi-Phase IrO_x/Ir Catalysts Dotted on Ndoped Carbon Nanotubes for High-Performance Li-CO₂ Batteries

Yeo-Jin Rho,^{$\ddagger a$} Boran Kim,^{$\ddagger a$} Kihyun Shin,^{$\ddagger b$} Graeme Henkelman^b, and Won-Hee Ryu^{*a}

^a Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.

^b Department of Chemistry and the Oden Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, Texas 78712-1224, United States

[‡] These authors contributed equally to this work

Corresponding author: <u>whryu@sookmyung.ac.kr</u> (W.-H. Ryu)

Figure S1. SEM images of (a) NCNT, (b) s-Ir/NCNT, (c) m-Ir/NCNT, and (d) 1-Ir/NCNT.

Figure S2. Size distribution of s-, m- and 1-Ir/NCNTs.

Figure S3. TGA curves of s-, m- and 1-Ir/NCNTs in the temperature range of 30–800 °C at a heating rate of 10 °C/min in air.

Figure S4. (a) STEM image and EDS mappings of (b) C and (c) N in NCNT and Ir in (d) s-Ir/NCNT, (e) m-Ir/NCNT and (f) l-Ir/NCNT.

Figure S5. Illustration of base structures for (a) IrO_x/Ir SAC (or IrO_2 SAC), (b) m-Ir NP (or Ir_6 NP), and (c) 1-Ir NP (or Ir_{12} NP).

Figure S6. Cycling performance of Li-CO₂ cells employing NCNTs in the 2.3–4.5 V voltage window under the specific capacity limit of 500 mAh g_{carbon} ⁻¹.

Figure S7. In situ DEMS results of the rate of evolution of CO_2 during charging in cells employing NCNTs.

Figure S8. *Ex situ* measurements on carbon electrodes. XRD, FT-IR and Raman peaks obtained from discharged and charged electrodes of s-Ir/NCNT.

Figure S9. All the possible intermediates and reaction mechanisms for Li-CO₂ battery reaction, with the most feasible reaction pathway highlighted in red.

Figure S10. Binding energies of intermediates on the different Ir particle systems.

(a)	s-lr/NCNT	Peak BE [eV]	Height CPS	Height ratio	Area CPS	Area ratio	
	4f _{7/2} Ir ⁰	60.77	1261.63	1	1884.07	1	
	4f _{5/2} Ir ⁰	63.78	1076.18	0.85	1469.38	0.78	
	4f _{7/2} Ir ⁴⁺	62	660.95	0.52	1438.25	0.76	
	4f _{5/2} Ir ⁴⁺	64.89	550.24	0.44	986.04	0.52	
(b)	m-lr/NCNT	Peak BE [eV]	Peak BE Height [eV] CPS		Area CPS	Area ratio	
	$4f_{7/2}$ lr ⁰	60.85	4758.32	1	5272.99	1	
	4f _{5/2} Ir ⁰	63.8	3952.46	0.83	4738.88	0.9	
	4f _{7/2} Ir ⁴⁺	61.98	1896.87	0.4	3153.06	0.6	
	4f _{5/2} Ir ⁴⁺	64.88	1367.82	0.29	2273.66	0.43	
(a)	-	Peak BF	Height	Height			
(C)	I-Ir/NCNT	[eV]	CPS	ratio	Area CPS	Area ratio	
	4f _{7/2} Ir ⁰	60.78	9754.82	1	10856.96	1	
	$4f_{5/2}$ Ir ⁰	63.79	7689.14	0.79	10840.47	1	
	4f _{7/2} Ir ⁴⁺	61.98	2927.77	0.3	3834.4	0.35	
	4f _{5/2} Ir ⁴⁺	64.9	1654.65	0.17	1673.71	0.15	

Table S1. Binding energies and relative integrated height and area from the Ir 4f XPS spectra of (a) s-Ir/NCNT, (b) m-Ir/NCNT, and (c) l-Ir/NCNT.

(eV)	$\Delta \mathbf{G_1}$	$\Delta \mathbf{G_2}$	ΔG_3^*	ΔG_4^*	$\Delta \mathbf{G_5}$	$\Delta \mathbf{G_6}^{*}$	ΔG_7	ΔG_8^*	$\Delta \mathbf{G_9}^{*}$	$\Delta \mathbf{G}_{10}$	ΔG_{11}^{*}	ΔG_{12}^{*}	$\Delta \mathbf{G_{13}}^{\star}$	ΔG_{14}
IrO ₂	0.678	0.558	-2.450	-1.866	0.094	-1.772	-0.502	-3.510	-2.484	0.201	-2.284	-1.782	-3.400	-0.916
lr ₆	-0.582	3.307	1.185	-1.151	-0.498	-1.650	0.371	-1.752	-0.862	0.252	-0.611	-0.981	-4.014	-3.152
Ir ₁₂	-0.017	3.022	0.845	-1.253	-0.085	-1.338	0.403	-1.774	-2.165	0.897	-1.267	-1.670	-6.173	-4.008
lr (111)	0.147	2.021	-1.202	-1.434	0.379	-1.055	0.964	-2.258	-2.382	1.177	-1.205	-2.170	-6.469	-4.086

Table S2. All the possible intermediates and reaction mechanisms for Li-CO₂ battery reaction and the most feasible reaction pathway in red color. * represents the $(Li^+ + e^-)$ pair transfer step.