Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Self-Healable Dynamic Poly(Urea-Urethane) Gel Electrolyte for Lithium Batteries

Fermin Elizalde, Julia Amici, Sabrina Trano, Giulia Vozzolo, Robert Aguirresarobe, Daniele Versaci, Silvia Bodoardo, David Mecerreyes, Haritz Sardon*, and Federico Bella*

Supporting Information

SELF-HEALING at 80°C, 4 hours

Time=0 min

Squeeze clamp

Figure S1. Representative image of self-healing process at 80 °C applying pressure with a squeeze clamp for 4 h.

Figure S2. A) Microscopic image of scratch disappearance and B) Stress-relaxation measurement at room temperature of swollen HUB-PU network.

Figure S3. A) Swelling percentage (%) upon time (min) of HUB-PU network. **B)** Representative image before and after swelling of HUB-PU network in LiPF₆ EC:DEC (1:1 v:v).

Figure S4 A) Li plating and stripping potential profiles *vs.* areal capacity, measured at different current density values (0.1, 0.5 and 1 mA cm⁻²) and referred to selected cycles (5th, 10th and 12th). In the inset, the magnification of the initial voltage hysteresis with related values is shown; it remains quite similar even when the current is increased by an order of magnitude. **B)** Increasing trend of the Coulombic efficiencies of the first 5 cycles at 0.1 mA cm⁻². **C)** Coulombic efficiencies values at different cycles and current density values.

Figure S5. Comparison of specific capacities vs. cycle number of Celgard[®] 2500 and HUB-PU network at C/10 for 200 cycles.

Figure S6. Cycling performances for 116 cycles of HUB-PU network mechanically damaged after 10 cycles.

Figure S7. Comparison of voltage profiles before and after cut of commercial Celgard[®] 2500 and HUP-PU network.

Table S1. Comparison among the most authoritative publications in the field of self-healing polymer electrolytes for LIBs. Note: in the present work, the data relative to the last two columns are the following: 161 mAh g^{-1} (1st cycle), then 159 mAh g^{-1} after the cut (11th cycle) and 127 mAh g^{-1} at the 100th cycle.

Ref.	Electrolyte	Self-healing mechanism	Electrode and its theoretical capacity	Cycles	Specific capacity of first and last cycles	Self-healing electrochemical test
[1]	CSE, PolyIL, 2D BN nanosheets, EMIMTFSI, LiTFSI	Electrostatic interaction between IL cations and salt anions	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	200	152 and 132.4 mAh g ⁻¹ (@ 0.1C, 55 °C)	Cut and healed outside, then used in cell, cycled @ 0.1C, 55°C
[2]	Ceramic-in- polymer, SPE, SiO ₂ NPs, PEG, PEO, LiTFSI	Chemical interaction of Li dendrites with silica	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	55	94 and and 156 mAh g ⁻¹ (@ 0.05C, 70 °C)	None
[3]	SPE, dicationic quaternary ammonium 6- armed, EMIMTFSI	Electrostatic interaction between IL cations and salt anions	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	50	147 and 138 mAh g ⁻¹ (@ 0.1C, 60 °C)	None
[4]	IGPE, NH ₂ -PEG- NH ₂ , TPB, BMImTFSI	Dynamic covalent imine bonds	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	50	154 and 132 mAh g ⁻¹ (@ 0.1C, RT)	None
[5]	GPE, NH ₂ -PEG- NH ₂ , BTA, LiFSI, LiDFOB, LiPF ₆	Dynamic covalent imine bonds	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	125	142 and 139 mAh g ⁻¹ (@ 1C, 30 °C)	Cut and healed outside, then used in cell, cycled @ 0.1C, 55 °C
[6]	GPE, NH ₂ -PEG- NH ₂ , TFB, LiPF ₆	Dynamic covalent imine bonds	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	300	150 and 126 mAh g ⁻¹ (@ 0.1C, RT)	None
[7]	SPE, SBMA, HFBM, EMITFSI, LiTFSI	Ion-dipole interaction	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	100	144 and 118 mAh g ⁻¹ (@ 0.2C, 60 °C)	None
[8]	SIGPE, PEGMA, UPy-MA, SSPSILi	Hydrogen bonding	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	60	129 and 129 mAh g ⁻¹ (@ 0.1C, 60 °C)	None
[9]	SPE, PVT, EMIMTFSI, LiTFSI	Electrostatic interaction between IL cations and salt anions	LFP 0.8, CB 0.1, PVDF 0.1, 170 mAh g ⁻¹ , vs. Li-metal	40	145 and 144 mAh g ⁻¹ (@ 0.1C, RT)	None

[10]	SPE, UPy-MA,	Quadruple	LFP 0.8, CB	100	157 and	Cut and healed
	PEGMA, LiTFSI	hydrogen	0.1, PVDF		143 mAh	outside, then
		bonding	0.1, 170		g^{-1}	used in a cell,
		_	mAh g^{-1} , vs.		(@ 0.1C,	cycled @ 0.1C,
			Li-metal		60 °C)	60 °C

BMIm = bis-trifluoromethanesulphonimide; BN = boron nitride; BTA = benzene-1,3,5tricarbaldehyde; CSE = composite solid electrolyte; DFOB = difluoro(oxalato)borate; EMIMTFSI = 1-ethyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide; HFBM = hexafuorobutyl methacrylate; IGPE = ionic gel polymer electrolyte; IL = ionic liquid; NPs = nanoparticles; PolyIL = poly(N,N,N-trimethyl-N-(1-vinlyimidazolium-3-ethyl)-ammonium bis(trifluorome thanesulfonyl)imide); PVT = poly(4-vinylpyridine)(propyltrimethylammonium); SBMA = sulfobetaine methacrylate; SIPE = single-ion conducting gel polymer electrolyte; SPE = solid-state polymer electrolyte; TPB = 1,3,5benzenetricarboxaldehyde; TFB = 1,3,5-triformylbenzene.

References

[1] J. Li, L. Yang, H. Zhang, X. Ji, Chem. Eng. J. 2022, 438, 135418.

[2] L. Mezzomo, S. Bonato, S. Mostoni, B. Di Credico, R. Scotti, M. D'Arienzo, P. Mustarelli, R. Ruffo, *Electrochim. Acta* **2022**, *411*, 140060.

[3] R. Li, Z. Fang, C. Wang, X. Zhu, X. Fu, J. Fu, W. Yan, Y. Yang, *Chem. Eng. J.* **2022**, *430*, 132706.

[4] L. Wan, X. Cao, X. Xue, Y. Tong, S. Ci, H. Huang, D. Zhou, *Energy Technol.* 2022, 10, 2100749.

[5] K. Deng, S. Zhou, Z. Xu, M. Xiao, Y. Meng, Chem. Eng. J. 2022, 428, 131224.

[6] L. Zhang, P. Zhang, C. Chang, W. Guo, Z. H. Guo, X. Pu, ACS Appl. Mater. Interfaces **2021**, *13*, 46794.

[7] C. Wang, R. Li, P. Chen, Y. Fu, X. Ma, T. Shen, B. Zhou, K. Chen, J. Fu, X. Bao, W. Yan, Y. Yang, *J. Mater. Chem. A* **2021**, *9*, 4758.

[8] H. Gan, Y. Zhang, S. Li, L. Yu, J. Wang, Z. Xue, ACS Appl. Energy Mater. 2021, 4, 482.

[9] X. Tian, P. Yang, Y. Yi, P. Liu, T. Wang, C. Shu, L. Qu, W. Tang, Y. Zhang, M. Li, B. Yang, *J. Power Sources* **2020**, *450*, 227629.

[10] B. Zhou, D. He, J. Hu, Y. Ye, H. Peng, X. Zhou, X. Xie, Z. Xue, *J. Mater. Chem. A* **2018**, *6*, 11725.