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Figure S1. XRD characterization of as-synthesized ZIF-7 particles.
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Figure S2. (a) SEM image of the as-synthesized ZIF-7 particles. (b) Cross-sectional 

SEM image of a ZIF-7 modified glass fiber separator. 
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Figure S3. The dimension of I3
– species.
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Figure S4. CV curves of the cell using the AC cathode at the scan rate of 0.5 mV/s of 

different cycles.
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Figure S5. SEM image of the ZIF-7 particles after long-term cycling.
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Figure S6. SEM image of (a) fresh surface of a lithium foil. SEM images of the cycled 

lithium foil surface from the cell using the traditional separator (b) and ZIF-7 modified 

separator.
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Figure S7. CV curves of the cell using the AC cathode at different scan rates.
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Figure S8. (a) XRD and (b) SEM characterization of as-synthesized 3DC@Li2TiSiO5 

powder.
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Figure S9. Electrochemical performance test of 3DC@Li2TiSiO5. (a) CV curves, (b) 

GCD profiles, (c) rate performance, and (d) cyclic capability of 3DC@Li2TiSiO5. The 

insert curve in (d) is GCD profile of the 1500th cycle.
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Figure S10. Schematic illustration of dual ion adsorption of the AC cathode at 0.1 A 
g-1.
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Figure S11. CV curves of AC//3DC@Li2TiSiO5 LICs with traditional and ZIF-7 

modified separators after several cycles.
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Table S1 Comparison of electrochemical performance of lithium ion capacitors.

Anode Cathode
Energy Density 

(Wh kg-1)

Cycling 

Number

Capacity 

Retention
Ref.

SnO2 rGO 186 5000 70 % [1]

Li3VO4 AC 136.4 1500 87 % [2]

CNT@ pLTO GF 101.8 5000 84.8 % [3]

Zr-MOF AC 122.5 1000 86 % [4]

graphite AC 162.3 - - [5]

PHC AC 104 5000 84.7 % [6]

NPCM-A
MoS2/N-

NPCM
120 4000 85.5 % [7]

Li5ReO6 AC 40 5000 - [8]

G–LTO
graphene–

sucrose
95 500 94 % [9]

LTSO AC+LiI 238.56 4000 85.2 %
This 

work
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