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Section A. Materials and Methods

Nuclear magnetic resonance spectra (‘H NMR and '3C NMR) were measured on a
Bruker 400 MHz spectrometer. The chemical shifts were reported in ppm referenced to
the deuterated solvents. Solid state Fourier 3C NMR spectra were measured on a
Bruker 400 MHz spectrometer. X-ray diffraction (XRD) data were performed on a
Bruker D8 Focus Powder X-ray Diffractometer by using powder on glass substrate,
from 20 = 2° up to 30° with 0.01° increment. Fourier transform infrared (FT IR) spectra
were recorded on a JASCO model FT IR-6100 infrared spectrometer. TGA
measurements were recorded on a Discovery TGA under N, by heating from 30 to 800
°C at a rate of 10 °C min-'. Elemental analysis was performed on an Elementar vario
MICRO cube elemental analyzer. Nitrogen sorption isotherms were measured at 77 K
with a TriStar II instrument (Micromeritics). The Brunauer-Emmett-Teller (BET)
method was utilized to calculate the specific surface areas. By using the non-local
density functional theory (NLDFT) model, the pore volume was derived from the
sorption curve. Morphology images were characterized with a Zeiss Merlin Compact
filed emission scanning electron microscope (FE-SEM) equipped with an energy-
dispersive X-ray spectroscopy (EDS) system at an electric voltage of 5 KV. ICP-MS
was carried out on a Perkin-Elmer Elan DRC II quadrupole inductively coupled plasma
mass spectrometer analyzer. X-ray photoelectron spectroscopy (XPS) experiments
were performed on a Thermo Scientific K-Alpha XPS spectrometer using an AlKa X-
ray radiation source.

Simulations. The process of simulating COF structure was accomplished via Materials
Studio software (version 8.0) of Accelrys Company. The hexagonal crystal system with
P6 symmetry group was set as the initial AA stacking COFs structures. The cell
parameters a and ¢ were obtained from the calculation of experimental PXRD of COF
by Bragg’s law. After the smallest asymmetric unit was filled into the blank cell, the
Forcite tools package was employed to optimize the cell geometry including energy
minimization. The AB stacking structure was built with the similar process as described

above, with the exception that a supercell with double ¢ value was selected as the initial



cell of staggered structure. The cell optimized from the universal force fields was
subsequently refined using the Pawley refinement method in Reflex tools.[S!-53]
Computational calculations: The crystalline structure of BIPY-COF was determined
using the density-functional tight-binding (DFTB+) method including Lennard-Jones
(LJ) dispersion. The calculations were carried out with the DFTB+ program package
version 1.2. DFTB is an approximate density functional theory method based on the
tight binding approach and utilizes an optimized minimal LCAO Slater-type all-valence
basis set in combination with a two-center approximation for Hamiltonian matrix
elements. The Coulombic interaction between partial atomic charges was determined
using the self-consistent charge (SCC) formalism. Lennard-Jones type dispersion was
employed in all calculations to describe vander Waals (vdW) and =n-stacking
interactions. The lattice dimensions were optimized simultaneously with the geometry.
Standard DFTB parameters for X—Y element pair (X, Y = C, H, N) interactions were
employed from the mio-0-1 set.

Pawley refinement: Molecular modeling and Pawley refinement were carried out
using Reflex, a software package for crystal determination from XRD pattern,
implemented in MS modeling version 4.4 (Accelrys Inc.). Initially, unit cell dimensions
for both hexagonal and rhombic lattices were taken from the DFTB calculation and the
space group for hexagonal and rhombic crystal system were selected as P6,
respectively. Pawley refinement was performed for hexagonal S4 lattice to optimize the
lattice parameters iteratively until the RWP value converges. The pseudo Voigt profile
function was used for whole profile fitting and Berrar—Baldinozzi function was used

for asymmetry correction during the refinement processes.

Stability test. The bipy-COF sample (20 mg) was kept at room temperature for 24 h in
HCI (1 M), and NaOH (1 M), respectively. The samples were collected by filtration and
rinsed with water (30x3 mL) and THF/MeOH(1:1, 30x3 mL). The sample was dried at

100 °C under vacuum overnight and subjected to PXRD.



Section B. Synthetic Procedures

2,6-Pyridine dialdehyde 1, 1,3,5-Tris(4-aminophenyl)benzene 2, AcOH, n-Butanol
(BuOH) and 1,2-Dichlorobenzene (o-DCB) were purchased from Heowns. All the other
solvents were purchased from Heowns and used as received without further

purification.

Synthesis of bipy-COF. The synthesis of bipy-COF was carried out via Schiff-base
condensation of 2,6-pyridine dialdehyde 1 (30.4 mg, 0.225 mmol) and 1,3,5-tris(4-
aminophenyl)benzene 2 (52.6 mg, 0.15 mmol) in DCB:n-butanol (1.5mL, 1:1) using 6
M AcOH aqueous (0.15 mL). Then the suspension was sonicated and heated at 120 °C
for 3 days using glass ampule. The resulting precipitate was washed with THF (3x10
mL) and MeOH (3x10 mL), and dried under vacuum overnight to generate bipy-COF

as a tawny powder in 93% yield.

Synthesis of Ni-bipy-COF. Nickel acetate (25 mg) was dissolved in 20 mL of MeOH,
and then bipy-COF (399.5 mg) was added. The mixture was stirred at room temperature
for 48 h. The resulting precipitate was collected by centrifugation, washed with 0.5 M
HCI (3x10 mL), H,O (3x10 mL), and MeOH (3x10 mL), respectively, and then dried
under vacuum at 75 °C overnight to give Ni-bipy-COF in 97% yield. The Ni content
was 0.98 wt% as determined by ICP-MS.

General Procedure for the Optimization of Reaction Conditions for the Ni-bipy-

COF-catalyzed Transfer Hydrogenation of Quinoline.

To a mixture of ammonia borane (15 mg, 0.4873 mmol, 5.0 equiv), Ni-bipy-COF (5
mg) and n-hexane (1 mL) in a 25 mL sealed glass tube were added quinoline (0.09747
mmol, 1.0 equiv). The reaction was stirred at 90 °C for 2 h. Then, the mixture was
cooled to room temperature, and extracted with EtOAc. The organic layer was washed
with brine (30 mL) and dried over Na,SO,. The solvent was removed under vacuum
and the crude material was purified by column chromatography (EtOAc/petroleum

ether) to afford 1,2,3,4-tetrahydroquinoline.

General Procedure for the Transfer Hydrogenation of Quinolines.



To a mixture of ammonia borane (154 mg, 5 mmol, 5.0 equiv), Ni-bipy-COF (50 mg)
and n-hexane (10 mL) in a 50 mL sealed glass tube were added quinolines (1 mmol,
1.0 equiv). The reaction was stirred at 90 °C for 2 h. Then, the mixture was cooled to
room temperature, and extracted with EtOAc. The organic layer was washed with brine
(300 mL) and dried over Na,SO,4. The solvent was removed under vacuum and the
crude material was purified by column chromatography (EtOAc/petroleum ether) to

afford 1,2,3,4-tetrahydroquinolines in 98-62% yield.



Section C. Supporting Figures
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Figure S1. FT-IR spectra of bipy-COF (blue line), Ni-bipy-COF (green line), 2,6-
pyridine dialdehyde (black line) and 1,3,5-tris(4-aminophenyl)benzene (red line).
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Figure S2. The 3C CP/MAS NMR spectrum of bipy-COF and Ni-bipy-COF.
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Figure S3. Thermogravimetric curves of bipy-COF (black) and Ni-bipy-COF (red).
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Figure S4. Pore size distributions of bipy-COF (red) and Ni-bipy-COF (black)
calculated using non-local density functional theory.
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Figure S5. Nitrogen adsorption-desorption isotherms of bipy-COF and Ni-bipy-COF.
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Figure S6. Experimental PXRD patterns of bipy-COF (purple), paw-ley-refined PXRD

patterns of bipy-COF (green), and the corresponding difference (black); the calculated
PXRD pat-terns for AA stacking (red) and AB stacking (blue).
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Figure S7. Chemical stability of bipy-COF after 24 h treatment under HCI (1 M, black)
and NaOH (1M, black) at room temperature.
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Figure S6. Experimental PXRD patterns of bipy-COF (red) and Ni-bipy-COF (black).
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Figure S7. XPS Ni 2p spectra of Ni-bipy-COF.
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Figure S8. N 1s XPS spectra of bipy-COF (black) and Ni-bipy-COF (red).
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Figure S9. The solid-state UV-vis spectra of bipy-COF and Ni-bipy-COF

Figure S10. SEM images of bipy-COF (a, b) and Ni-bipy-COF (c, d).
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Figure S11. Experimental PXRD patterns of Ni-bipy-COF after the first cycle (black)
and after the fifth cycle (red).
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Figure S12. The *C CP/MAS NMR spectrum of Ni-bipy-COF before (green) and after
the fifth cycle (red).
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Figure S13. The FT-IR spectra of Ni-bipy-COF before (red) and after the fifth cycle
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Figure S14. Control experiments.

To probe the mechanism of this reaction, control experiments were preformed (Figure
S14). When the reaction was conducted without Ni-BIPY-COF catalyst, no product was
observed (Figure S14a). When the reaction was conducted without quinolines as a
hydrogen acceptor, no H, molecule was monitored (Figure S14c¢). These results
demonstrated that this reaction is a catalytic transfer hydrogenation process. In addition,
a key reaction intermediate, quinoline-borane (Figure S14d), was observed at the
beginning of the reaction (Scheme 3), and this intermediate could be transformed into
the target product 4a with 95% yield under the standard conditions (Figure S14e),
indicating quinoline-borane played a vital role in this catalytic transfer hydrogenation.
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Figure S15. The experimental 'H NMR spectra of quinoline-borane intermediate.
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Figure S16. Plausible Mechanism.
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Figure S17 a. Optimized geometrical structures and the electronic potential surfaces for the
key intermediate and the model systems of Ni-bipy-COF. The red, green, and blue regions
indicate negative, neutral, and positive electrostatic potentials, respectively. b. Distributions of
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of the key intermediate and the model systems of Ni-bipy-COF, respectively. All
calculations were performed at the theoretical level of MO6L/6-311G(d) (SDD basis set for Ni).

Figure S18. (a,b) Unit cell of eclipsed structure; (¢) Side view of eclipsed structure. C:
blue, N: red, and H: white.



Section D. Supporting Tables

Table S1. Optimization of reaction conditions for the Ni-bipy-COF-catalyzed transfer

hydrogenation of 3a. Conditions: 3a (0.09747 mmol, 1.0 equiv), [Ni] (5 mg), AB

(0.4873 mmol, 5.0 equiv), solvent (1.0 mL), 60~90 °C, 2 h.

N
~
N

catalyst, NH;*BH;

solvent, temperature, 2 h

)

3a H

entry solvent catalyst temperature yield
1 MeOH none 60 °C none
2 MeOH Ni(OAc), 60 °C 8 %
3 MeOH Ni-bipy-COF 60 °C 30 %
4 MeOH bipy-COF 60 °C none
5 THF Ni-bipy-COF 60 °C 53 %
6 hexane Ni-bipy-COF 60 °C 81 %
7 Tol Ni-bipy-COF 60 °C 23 %
8 H,0 Ni-bipy-COF 60 °C none
EtOH Ni-bipy-COF 60 °C 20 %

10 H,0 Ni-bipy-COF 90 °C none
11 EtOH Ni-bipy-COF 90 °C 28 %
12 hexane Ni-bipy-COF 80°C 90 %
13 hexane Ni-bipy-COF 90 °C 98 %

Table S2. Optimization of the equivalents of NH;-BH;. Reaction conditions: 0.09747
mmol of quinoline, 5.0 mg of Ni-bipy-COF, NH;3-BHj; (2.0-5.0 equiv), 1 mL of hexane,

i \/\’\
e
N

90°C.

Ni-bipy-COF, NH3*BH,

hexane, 90°C, 2 h

)

3a 4a H
entry the equivalents of NH;*BH; yield
1 2 85%
2 3 90%
3 4 94%
4 5 98%




Table S3. Ni-bipy-COF-catalyzed transfer hydrogenation of quinolines. Reaction

conditions: 1 mmol of quinolines, 50.0 mg of Ni-bipy-COF, NH;3-BHj; (5.0 equiv), 10
mL of hexane, 90°C.

< m Ni-bipy-COF, NH3*BH; - @j
A . (R
NN n-hexane, 90 °C, 2-4 h N

3 4 H

N N N N
H H H H
4a: 98 % 4b: 90 % 4c: 80 % 4d: 70 %
N N N N
H H H H
de: 62 % 4F: 71 % 4g: 73 % 4h: 72 %

(o] (o] H

N
sekaselcolive

O,N N N

N N 2

H H H H

4i: 63 % 4j: 65 % ak: 77 % 41: 95 %

Table S4. The yields of 1, 2, 3, 4-tetrahydroquinoline catalyzed by Ni-bipy-COF for 5
reaction cycles. Reaction conditions: 1 mmol of quinoline, 50.0 mg of Ni-bipy-COF,
NH;-BHj; (5.0 equiv), 10 mL of hexane, 90°C.
X Ni-bipy-COF, NH3+BH;
@ENJ n-hexane, 90 °C, 2 h CENj

3a 4aH

cycle 1 2 3 4 5
yield 95 93 94 92 90

Table S5. The gram scale reaction and yields of 1, 2, 3, 4-tetrahydroquinoline for 5
reaction cycles. Reaction conditions: 1.0 g of quinolines (7.7 mmol), 387 mg of Ni-
bipy-COF, NH;-BHj; (5.0 equiv), 77 mL of hexane, 90°C, in a 350 mL sealed glass tube.
X Ni-bipy-COF, NH3BH;
m n-hexane,90°C,2h m

3a,19g 4a|'I

cycle 1 2 3 4 5
yield 96 95 93 94 91




Table S6. Elemental analysis of bipy-COF.

C (%) H (%) N (%)
Calcd. 83.01 4.49 12.49

bipy-COF
Found 82.96 4.59 12.35

Table S7. Atomistic coordinates for the AA-stacking mode of Ni-bipy-COF optimized
using DFTB+ method. Space group: P6; a = B = 90°, y = 120°, a = 35.1635 A, b =
35.1635 A, c = 3.445827 A.

Cl1 C 0.34446 | 0.71557 12 1 0
C2 C 0.33735 | 0.67181 12 1 0
C3 C 0.37288 | 0.66324 1/2 1 0
C4 C 0.41697 | 0.69769 12 1 0
C5 C 0.42395 | 0.74110 12 1 0
C6 C 0.38909 | 0.74958 1/2 1 0
N7 N 0.45326 | 0.68805 1/2 1 0
C8 C 0.49478 | 0.71902 1/2 1 0
C9 C 0.30686 | 0.72636 1/2 1 0
C10 C 0.26171 0.69301 1/2 1 0
Cl1 C 0.22684 | 0.70283 1/2 1 0
Cl12 C 0.23900 | 0.74792 12 1 0
C13 C 0.28318 | 0.78273 12 1 0
Cl4 C 0.31613 | 0.77077 12 1 0
C15 C 0.29476 | 0.83129 1/2 1 0
C16 C 0.17793 2/3 12 1 0
C17 C 0.26154 | 0.84317 172 1 0
C18 C 0.27159 | 0.88717 1/2 1 0
C19 C 0.31559 | 0.92214 1/2 1 0
C20 C 0.34895 | 0.91123 1/2 1 0
C21 C 0.33900 | 0.86700 1/2 1 0
C22 C 0.16464 | 0.62133 1/2 1 0
C23 C 0.11995 | 0.58837 1/2 1 0
C24 C 0.08606 | 0.59915 12 1 0
C25 C 0.09859 | 0.64373 12 1 0
C26 C 0.14317 | 0.67677 12 1 0
N27 N 0.32756 | 0.96838 1/2 1 0
C28 C 0.29941 0.98249 12 1 0
N29 N 0.03924 | 0.56653 172 1 0
C30 C 0.02298 | 0.52397 1/2 1 0
C31 C 0.53503 | 0.71437 1/2 1 0




N32 N 0.53610 | 0.67538 12 1 0
C33 C 0.57619 | 0.67645 12 1 0
C34 C 0.61570 | 0.71731 1/2 1 0
C35 C 0.61492 | 0.75624 12 1 0
C36 C 0.57496 | 0.75495 12 1 0
C37 C 0.58283 | 0.63749 1/2 1 0
N38 N 0.55254 | 0.59590 1/2 1 0
C39 C 0.56257 | 0.56003 1/2 1 0
C40 C 0.60603 | 0.56695 1/2 1 0
C41 C 0.61427 | 0.53174 1/2 1 0
C42 C 0.57984 | 0.48734 1/2 1 0
C43 C 0.53622 | 0.48074 12 1 0
C44 C 0.52803 | 0.51628 12 1 0
C45 C 0.58955 | 0.44906 12 1 0
C46 C 0.63336 | 0.45632 1/2 1 0
C47 C 0.64285 | 0.42143 12 1 0
C48 C 0.60625 | 0.37791 12 1 0
C49 C 0.56200 | 0.36831 1/2 1 0
C50 C 0.55488 | 0.40471 1/2 1 0
C51 C 0.69044 | 0.42989 1/2 1 0
C52 C 0.69909 | 0.39440 1/2 1 0
C53 C 0.74191 0.40133 1/2 1 0
C54 C 0.77856 | 0.44359 1/2 1 0
C55 C 0.77172 | 0.47979 12 1 0
C56 C 0.72833 | 0.47306 12 1 0
C57 C 0.52349 | 0.32055 12 1 0
C58 C 0.52988 | 0.28336 1/2 1 0
C59 C 0.49417 | 0.23978 12 1 0
C60 C 0.45076 | 0.23171 12 1 0
C61 C 0.44382 | 0.26760 1/2 1 0
C62 C 0.47904 | 0.31092 1/2 1 0
N63 N 0.41231 0.18834 1/2 1 0
N64 N 0.82112 | 0.44651 1/2 1 0
C65 C 0.86156 | 0.47952 1/2 1 0
C66 C 0.89817 | 0.46913 1/2 1 0
Co67 C 0.40830 | 0.14924 12 1 0
C68 C 0.36306 | 0.10984 12 1 0
C69 C 0.32650 | 0.11644 12 1 0
C70 C 0.28372 | 0.08096 1/2 1 0
C71 C 0.27632 | 0.03815 12 1 0
C72 C 0.31161 0.02976 172 1 0
C73 C 0.35542 | 0.06596 1/2 1 0
C74 C 0.88716 | 0.42449 1/2 1 0




C75 C 0.92004 | 0.41345 12 1 0
C76 C 0.96388 | 0.44645 12 1 0
C77 C 0.97502 | 0.49092 1/2 1 0
N78 N 0.94202 | 0.50147 12 1 0
H79 H 0.30463 | 0.64346 12 1 0
H80 H 0.36584 | 0.62940 1/2 1 0
H81 H 0.45609 | 0.77013 1/2 1 0
H82 H 0.39921 0.78401 1/2 1 0
H83 H 0.50288 | 0.75285 1/2 1 0
H84 H 0.25390 | 0.65936 1/2 1 0
HS85 H 0.21368 | 0.75603 1/2 1 0
H86 H 0.34931 0.79673 12 1 0
H87 H 0.22690 | 0.81941 12 1 0
H88 H 0.24388 | 0.89258 12 1 0
H89 H 0.38314 | 0.93730 1/2 1 0
H90 H 0.36705 | 0.86221 12 1 0
H91 H 0.18806 | 0.60994 12 1 0
H92 H 0.11298 | 0.55470 1/2 1 0
H93 H 0.07344 | 0.65314 1/2 1 0
H94 H 0.14872 | 0.70984 1/2 1 0
H95 H 0.26451 0.95934 1/2 1 0
H96 H 0.04478 | 0.51055 1/2 1 0
H97 H 0.64764 | 0.71935 1/2 1 0
H98 H 0.64544 | 0.78756 12 1 0
H99 H 0.57551 0.78619 12 1 0
HI100 H 0.61695 | 0.64631 12 1 0
HI101 H 0.63493 | 0.59924 1/2 1 0
H102 H 0.64851 0.54090 12 1 0
HI103 H 0.50731 0.44849 12 1 0
H104 H 0.49426 | 0.50950 1/2 1 0
H105 H 0.66044 | 0.48922 1/2 1 0
H106 H 0.61197 | 0.35093 1/2 1 0
H107 H 0.52199 | 0.39860 1/2 1 0
H108 H 0.67375 | 0.36032 1/2 1 0
H109 H 0.74662 | 0.37299 1/2 1 0
HI110 H 0.79952 | 0.51307 12 1 0
HI1l1 H 0.72559 | 0.50235 12 1 0
HI12 H 0.56203 | 0.28648 12 1 0
HI13 H 0.50080 | 0.21274 1/2 1 0
H114 H 0.41042 | 0.26191 12 1 0
HI15 H 0.46977 | 0.33591 172 1 0
H116 H 0.86849 | 0.51330 1/2 1 0
H117 H 0.43696 | 0.14516 1/2 1 0




HI18 H 0.33075 | 0.14928 12 1 0
HI119 H 0.25606 | 0.08669 12 1 0
HI120 H 0.24248 | 0.01126 1/2 1 0
HI121 H 0.38304 | 0.06016 12 1 0
HI122 H 0.85321 0.39792 12 1 0
HI123 H 0.91150 | 0.37916 1/2 1 0
H124 H 0.98912 | 0.43716 1/2 1 0




Section E. "TH NMR and 3C NMR Spectra of THQs

N 1,2,3,4-tetrahydroquinoline (4a): Yellow oil; 98% yield; '"H NMR (400
MHz, CDCI3) 6 6.98 ((ddd, J=14.5, 7.5, 1.5 Hz, 2H), 6.63 ((td, /= 7.4, 1.2 Hz, 1H),
6.49 (dd,J=17.9, 1.2 Hz, 1H), 3.91 (ms, 1H), 3.33-3.30 (m, 2H), 2.78 (t, /= 6.4 Hz,
2H), 1.99-1.93 (m, 2H); *C NMR (100 MHz, CDCl;) & 144.82, 129.55, 126.76,
121.48,116.97,114.22,42.02, 27.01, 22.22.

o)

H 6-methyl-1,2,3,4-tetrahydroquinoline (4b): Yellow solid; 90% yield; 'H
NMR (400 MHz, CDCl3) 6 6.79 (d, J= 5.6 Hz, 2H), 6.47-6.38 (m, 1H), 3.34-3.21 (m,
2H), 2.74 (t, J = 6.4 Hz, 2H), 2.21 (s, 3H), 2.00-1.86 (m, 2H); '*C NMR (100 MHz,
CDCl5) 6 142.48, 130.14, 127.31, 126.33, 121.68, 114.53, 42.25, 26.97, 22.50, 20.47.

N

H 6-methoxy-1,2,3,4-tetrahydroquinoline (4¢): Yellow solid; 80% yield,
'H NMR (400 MHz, CDCl3) 8 6.59 (dt, J = 8.8, 2.8 Hz, 2H), 6.46 (d, J = 8.5 Hz, 1H),
3.74 (s, 3H), 3.33-3.20 (m, 2H), 2.76 (t, J = 6.5 Hz, 2H), 2.02-1.89 (m, 2H); '3*C NMR
(100 MHz, CDCls) 6 151.86, 138.92, 122.92, 115.61, 114.92, 112.94, 55.85, 42.38,
27.21,22.48.

NC

N 1,2,3,4-tetrahydroquinoline-6-carbonitrile (4d): Yellow oil; 70% yield;
'HNMR (400 MHz, CDCl;) 6 7.23-7.14 (m, 2H), 6.38 (d, /= 8.2 Hz, 1H), 4.38 (s, 1H),
3.55-3.21 (m, 2H), 2.73 (t, J = 6.3 Hz, 2H), 2.12-1.72 (m, 2H); 3C NMR (100 MHz,
CDCls) 6 148.27, 133.28, 131.33, 120.99, 120.89, 113.29, 97.78, 41.63, 26.77, 21.01.

OzN

N 6-nitro-1,2,3,4-tetrahydroquinoline (4¢): Brown solid; 62% yield; 'H
NMR (400 MHz, CDCl3) 6 8.12-7.69 (m, 2H), 6.53-6.15 (m, 1H), 4.78 (ms, 1H), 3.41
(td, J=5.9, 2.6 Hz, 2H), 2.78 (t, J = 6.3 Hz, 2H), 1.94 (dt, J = 12.2, 6.1 Hz, 2H); 13C
NMR (100 MHz, CDCl3) & 150.49, 137.21, 125.96, 124.34, 119.88, 112.20, 41.78,
26.93, 20.85.

0
N 6-fluoro-1,2,3,4-tetrahydroquinoline (4f): Yellow oil; 71% yield; 'H
NMR (400 MHz, CDCls) 6 6.79-6.60 (m, 2H), 6.40 (dd, J = 9.4, 4.9 Hz, 1H), 3.56 (s,



1H), 3.33-3.19 (m, 2H), 2.75 (t, J = 6.5 Hz, 2H), 2.03-1.83 (m, 2H); 3C NMR (100
MHz, CDCl5) § 155.46 (d, J=233.0 Hz), 140.98 (d, J = 2.0 Hz), 122.80 (d, /= 7.0 Hz),
115.63 (d, J = 21.0 Hz), 114.93 (d, J = 8.0 Hz), 113.20 (d, J = 22.0 Hz), 42.10, 27.05
(d, J=2.0 Hz), 22.01.

Cl

N 6-chloro-1,2,3,4-tetrahydroquinoline (4g): Yellow solid; 73% yield; 'H
NMR (400 MHz, CDCls) 6 7.05-6.65 (m, 2H), 6.39 (t, J = 5.1 Hz, 1H), 3.58 (s, 1H),
3.28 (dd,J=6.9,4.1 Hz, 2H), 2.73 (t,J= 6.4 Hz, 2H), 1.92 (ddd, /J=11.7, 8.7, 6.4 Hz,
2H); BC NMR (100 MHz, CDCls) & 143.34, 129.05, 126.53, 122.90, 121.15, 115.12,
41.88, 26.90, 21.77.

“CO)

N 6-bromo-1,2,3,4-tetrahydroquinoline (4h): Yellow oil; 72% yield; 'H
NMR (400 MHz, CDCl3) 6 7.03 (dt, J= 8.3, 2.2 Hz, 2H), 6.33 (d, J= 8.3 Hz, 1H), 3.83
(ms, 1H), 3.46-3.17 (m, 2H), 2.72 (t, J = 6.4 Hz, 2H), 2.07-1.80 (m, 2H); *C NMR
(100 MHz, CDCl5) 6 143.79, 131.92, 129.42, 123.44, 115.57, 108.25, 41.85, 26.89,
21.74.

0
OO
N methyl-1,2,3,4-tetrahydroquinoline-6-carboxylate (4i): White solid,;
63% yield; "H NMR (400 MHz, CDCl;) & 7.73-7.55 (m, 2H), 6.45-6.32 (m, 1H), 4.35
(ms, 1H), 3.83 (s, 3H), 3.47-3.25 (m, 2H), 2.76 (t, J = 6.3 Hz, 2H), 2.04-1.83 (m, 2H);
BCNMR (100 MHz, CDCl3) 6 167.59, 148.84, 131.34, 129.15,119.93, 117.42, 112.66,

51.48,41.74,26.94, 21.44.

0
T

N 1,2,3,4-tetrahydroquinoline-6-carboxylic acid (4j): Yellow solid;
65% yield; '"H NMR (400 MHz, CDCl3) & 7.80-7.64 (m, 2H), 6.47-6.31 (m, 1H), 3.49-
3.19 (m, 2H), 2.78 (t, /= 6.3 Hz, 2H), 1.93 (td, /= 11.4, 6.2 Hz, 2H); 3C NMR (100
MHz, CDCl3) 6 172.63, 149.54, 132.08, 130.02, 119.97, 116.48, 112.69, 41.80, 26.94,

21.39.

N 7-nitro-1,2,3,4-tetrahydroquinoline (4k): Yellow solid; 77% yield; 'H

NMR (400 MHz, CDCls) & 7.39 (dd, J= 8.2, 2.3 Hz, 1H), 7.28-7.25 (m, 1H), 7.01 (d,
J=28.2 Hz, 1H), 4.19 (ms, 1H), 3.49-3.19 (m, 2H), 2.81 (t, /= 6.4 Hz, 2H), 2.12-1.83



(m, 2H); *C NMR (100 MHz, CDCl;) 6 147.30, 145.21, 129.76, 128.35, 111.32,
107.84,41.59, 27.31, 21.14.

H
Cr)
N 1,2,3,4-tetrahydroquinoxaline (41): Yellow brown solid; 95% yield; 'H

NMR (400 MHz, CDCL3) 8 6.61-6.57 (m, 2H), 6.52-6.48 (m, 2H), 3.42 (s, 4H); 13C
NMR (100 MHz, CDCls) & 133.74, 118.83, 114.78, 41.45.

AN
o9
N
BH; quinoline-borane intermediate: Wite solid; 50% yield; 'H NMR (400 MHz,

CDCly) § 9.17 (d, J = 3.2 Hz, 1H), 8.98 (d, J = 6.0 Hz, 1H), 8.45 (d, J = 5.2 Hz, 1H),
7.95-7.92 (m, 2H), 7.73 (t, J = 6.4 Hz, 1H), 7.54 (dd, J = 3.2, 5.6 Hz, 1H), 3.11-2.64
(m, 3H).



Section F. Copies of NMR Spectra
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