Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplemental Information

Inverse Design of Stable Spinel Compounds with High Optical

Absorption via Materials Genome Engineering

Qingde Sun^{1,2}, Su-Huai Wei^{2*}

¹Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome

Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114, China

²Beijing Computational Science Research Center, Beijing 100193, China

TABLE OF CONTENTS:

- Figure S1: The calculated decomposition energies of CdBi₂S₄, PbBi₂S₄, PbIn₂S₄ and CdIn₂S₄
- Figure S2: The calculated phonon spectrum of CdBi₂S₄, PbBi₂S₄, PbIn₂S₄ and CdIn₂S₄
- Table S1: The PBE-calculated band gaps, electron and hole effective mass of CdBi₂S₄, PbBi₂S₄, PbIn₂S₄ and CdIn₂S₄

The decomposition energies of the four examples of four types of spinel compounds, i.e. $CdBi_2S_4$ (type-I), $PbBi_2S_4$ (type-II), $PbIn_2S_4$ (type-III) and $CdIn_2S_4$ (type-IV) are calculated in common decomposition pathways (decomposing into binary compounds), as shown in Fig. S1. The positive values indicate that they are thermodynamically stable. The phonon spectrum of these four cases are shown in Fig. S2. No virtual frequencies exist in $CdIn_2S_4$ and $CdBi_2S_4$, indicating that the are dynamically stable in the spinel structure. Indeed, $CdIn_2S_4$ and $CdBi_2S_4$ have been synthesized in experiment^{1,2}. The weak negative frequencies of $PbBi_2S_4$ and $PbIn_2S_4$ indicates that there may exist some local distortions for these compounds in these spinel structure. We notice that the alloy (Cd,Pb)Bi_2S_4 has also been synthesized in experiment³.

The electronic properties such as band gaps and effective mass of CdBi₂S₄, PbBi₂S₄, PbIn₂S₄ and CdIn₂S₄ are shown in Table S1. CdIn₂S₄ has pseudodirect band gap, while the other three have indirect band gaps. We conduct the HSE calculations with the parameter $\alpha = 0.28$ to align the benchmark of the experimental band gap of CdIn₂S₄ (2.2 eV).⁴

Figu

re S1. The calculated decomposition energies of $CdBi_2S_4$ (type-I), $PbBi_2S_4$ (type-II), $PbIn_2S_4$ (type-III) and $CdIn_2S_4$ (type-IV) along the common decomposition pathways.

Figure S2. The calculated phonon spectrum of (a) $CdBi_2S_4$, (b) $PbBi_2S_4$, (c) $PbIn_2S_4$ and (d) $CdIn_2S_4$ at 0K.

Table S1. The PBE-calculated and HSE-calculated ($\alpha = 0.28$) band gaps, electron and hole effective mass for four examples of four types of spinel compounds, i.e. CdBi₂S₄ (type-I), PbBi₂S₄ (type-II), PbIn₂S₄ (type-III) and CdIn₂S₄ (type-IV).

Spinel compounds	PBE gap(eV)	HSE gap(eV)	Electron effective mass (m _e)	Hole effective mass (m _e)
CdIn ₂ S ₄	1.11 (pseudodirect)	2.20	0.14	2.75
PbIn ₂ S ₄	0.80 (indirect)	1.48	0.68	0.37
CdBi ₂ S ₄	0.74 (indirect)	1.68	0.18	0.47
PbBi ₂ S ₄	1.55 (indirect)	2.26	0.59	0.87

References

- 1. B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon and C. W. Lee, *Adv. Funct. Mater.*, 2006, **16**, 1349-1354.
- 2. V. Semenov, O. Ostapenko, A. Lukin, E. Zavalishin and A. Y. Zavrazhnov, *Inorg. Mater.*, 2000, **36**, 1197-1199.
- 3. T. i. Balić-Žunić and E. Makovicky, *Can. Mineral.*, 2007, **45**, 437-443.
- 4. S.-i. Katsuki, J. Phys. Soc. Japan, 1972, 33, 1561-1565.