Supplementary information

Theoretical design principles of metal catalysts for selective ammonia

oxidation from high throughput computation

Jiaqiang Yang,^a Xi Chen,^a Zhang Liu,^a Qingbo Wang,^b Yanwei Wen,^a Aimin Zhang,^c Rong Chen^{*,d} and Bin Shan^{*,a}

^a State Key Laboratory of Material Processing and Die and Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

^b School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, PR China

^c State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China

^d State Key Laboratory of Digital Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

The benchmark about cutoff energy in DFT calculation.

Table S1. The energy of bulk metal systems with different cutoff energy (*Ecut*) for DFT calculation (Unit: eV).

Ecut	Ag-fcc	Au-fcc	Cu-fcc	Ir-fcc	Pd-fcc	Pt-fcc	Rh-fcc	Ru-hcp
300eV	-10.830	-12.781	-14.781	-35.429	-20.912	-24.330	-29.163	-18.604
400eV	-10.796	-12.759	-14.779	-35.427	-20.891	-24.314	-29.147	-18.599
500eV	-10.795	-12.758	-14.772	-35.428	-20.892	-24.315	-29.148	-18.599

The adsorption behaviors on low index facet of different metal

systems.

Table S2. The adsorption energies of reactants, intermediates and productions in NH₃-SCO process on low-index facets of Ag, Au, Ir, Cu, Pd, Pt, Rh and Ru (Unit: eV)

_											,	
	NH_3^*	NH_2^*	NH*	N^{*}	H^*	0*	0Н*	O_2^{*}	H_2O^*	N_2^*	<i>N0</i> *	$N_2 O^*$
Ag(100)	-0.38	-1.98	-2.82	-2.92	-1.98	-0.87	-2.93	-0.63	-0.10	-0.01	-0.51	-0.03
Au(100)	-0.50	-2.11	-2.46	-2.55	-2.33	-0.02	-2.21	-0.14	-0.07	-0.01	-0.64	-0.03
Ir(100)	-1.27	-3.56	-4.71	-5.48	-2.97	-2.15	-3.54	-	-0.32	-0.76	-2.63	-0.78
Cu(100)	-0.60	-2.63	-4.11	-4.70	-2.43	-2.00	-3.35	-1.05	-0.17	-0.09	-1.21	0.01
Pd(100)	-0.79	-2.71	-4.09	-5.07	-2.77	-1.20	-2.76	-1.04	-0.17	-0.37	-2.20	-0.22
Pt(100)	-1.09	-3.20	-3.83	-4.61	-2.91	-1.31	-3.07	-1.21	-0.14	-0.47	-2.30	-0.25
Rh(100)	-1.02	-3.30	-5.04	-5.89	-2.85	-2.28	-3.37	-2.00	-0.28	-0.72	-2.78	-1.06
Ag(111)	-0.30	-1.64	-2.24	-1.96	-2.06	-0.25	-2.59	0.18	-0.07	0.00	-0.25	-0.02
Au(111)	-0.33	-1.48	-2.28	-2.37	-2.18	0.19	-1.89	0.70	-0.05	0.01	-0.14	-0.01

Ir(111)	-0.95	-2.71	-4.44	-5.30	-2.71	-1.75	-2.73	-1.07	-0.13	-0.37	-2.00	0.04
Cu(111)	-0.48	-2.19	-3.42	-3.54	-2.48	-1.38	-3.03	-0.56	-0.09	0.01	-1.03	0.02
Pd(111)	-0.83	-2.54	-4.24	-5.05	-2.97	-1.55	-2.75	-0.96	-0.13	-0.29	-2.48	-0.06
Pt(111)	-0.89	-2.41	-4.02	-4.81	-2.73	-1.12	-2.35	-0.53	-0.08	-0.14	-1.76	0.44
Rh(111)	-0.97	-2.90	-4.64	-5.67	-2.85	-2.13	-3.14	-1.62	-0.39	-0.64	-2.59	-0.43
Ru(0001)	-0.95	-3.10	-5.20	-6.36	-2.91	-2.96	-3.60	-	-0.42	-0.66	-2.74	-0.89

Table S3. The binding types of reactants, intermediates and productions in NH₃-SCO process on low-index facets of Ag, Au, Ir, Cu, Pd, Pt, Rh and Ru.

	NH_3^*	NH_2^*	NH*	N^*	H^*	0*	OH [*]	O_2^{*}	H_2O^*	N_2^*	N 0 *	<i>N</i> ₂ <i>O</i> *
Ag(100)	top	bridge	4-fold	4-fold	bridge	4-fold	4-fold	double	-	-	4-fold	-
Au(100)	top	bridge	4-fold	4-fold	bridge	4-fold	bridge	double	-	-	bridge	-
Ir(100)	top	bridge	4-fold	4-fold	bridge	4-fold	bridge	-	top	top	bridge	double
Cu(100)	top	bridge	4-fold	4-fold	4-fold	4-fold	4-fold	double	top	-	4-fold	-
Pd(100)	top	bridge	4-fold	4-fold	bridge	4-fold	4-fold	double	top	top	bridge	double
Pt(100)	top	bridge	4-fold	Bridge	bridge	4-fold	bridge	double	top	top	bridge	top
Rh(100)	top	bridge	4-fold	4-fold	bridge	4-fold	4-fold	double	top	top	bridge	double
Ag(111)	top	bridge	3-fold	3-fold	3-flod	3-fold	3-fold	double	-	-	3-fold	-
Au(111)	top	bridge	3-fold	3-fold	3-fold	3-fold	3-fold	double	-	-	bridge	-
Ir(111)	top	bridge	3-fold	3-fold	3-fold	3-fold	bridge	double	-	top	3-fold	-
Cu(111)	top	bridge	3-fold	3-fold	3-fold	3-fold	3-fold	double	-	-	3-fold	-
Pd(111)	top	bridge	3-fold	3-fold	3-fold	3-fold	3-fold	double	-	top	3-fold	-
Pt(111)	top	bridge	3-fold	3-fold	3-fold	3-fold	bridge	double	-	top	3-fold	double
Rh(111)	top	bridge	3-fold	3-fold	3-fold	3-fold	3-fold	double	top	top	3-fold	double
Ru(0001)	top	bridge	3-fold	3-fold	3-fold	3-fold	3-fold	-	top	top	3-fold	double

Note: The "double" means double neighboring sites are needed for O₂ and N₂O adsorption because two atoms of molecules binds to surface atoms and "-" means the non-adsorption or non-chemisorption for O₂, H₂O, N₂ and N₂O molecules on metal catalysts.

Table S3 shows the stable binding for intermediates on metal catalysts. In general, NH_3^* , NH_2^* , NH^* and N^* and O^* prefer to bind to surface with top (top), bridge (bridge), 4-fold (3-fold), 4-fold (3-fold) and 4-fold (3-fold) types for (100) ((111)), respectively, due to the decreasing coordination atoms. Adsorbed H and OH mainly possess the bridge (bridge) and 4-fold (3-fold) binding for (100) ((111)). As for other reactants and products, H_2O and N_2 mainly possess the top binding and the double sites are needed for O_2 and N_2O adsorption. And the adsorbed NO is obtained through the N-metal interaction with bridge (bridge) and 4-fold (3-fold) binding for (100) inding for (100) ((111)).

The reaction information on different facets of metal systems.

Table S4. The detailed reaction barriers (E_a) and enthalpy (E_n) of elementary steps involved in NH₃-SCO at (100) (Units: eV).

2		· ·			/									
	Ag(100)	Au(100)	Cu(100)	Ir(1	100)	Pd(100)	Pt(100)	Rh(100)
	E_{a}	E_n												

NH3*+OH*=NH2*+H2O*/H2O(g)+*	0.68	0.65	1.15	0.24	0.82	0.57	1.18	0.00	0.91	0.22	1.09	0.04	1.32	0.32
$N{H_2}^*\!\!+\!O{H}^*\!\!=\!\!N{H}^*\!\!+\!\!H_2O^*\!/\!H_2O(g)\!\!+^*$	1.04	0.71	1.17	0.92	1.17	0.47	1.17	0.68	1.41	0.13	1.10	0.25	1.10	-0.09
NH*+OH*=N*+H2O*/H2O(g)+*	1.21	0.91	1.03	0.38	2.30	0.87	1.47	0.56	1.61	-0.01	1.25	0.42	1.34	0.40
NH3*+O*=NH2*+OH*	0.77	-0.27	0.62	-0.52	0.92	-0.03	1.31	-0.13	0.79	-0.26	0.76	-0.25	1.02	-0.17
$NH_2^*+O^*=NH^*+OH^*$	1.00	0.06	0.74	0.15	1.30	0.07	0.97	0.47	1.09	-0.23	1.19	0.11	0.81	-0.09
NH*+O*=N*+OH*	2.55	-0.09	0.63	-0.19	2.17	0.43	0.81	0.16	1.57	-0.27	0.09	-0.13	1.46	0.34
$N{H_3}^*\!\!+^*\!\!=\!\!N{H_2}^*\!\!+\!H^*$	2.07	1.23	1.97	0.95	2.08	0.47	0.90	-0.37	1.50	0.19	1.69	-0.12	0.91	-0.25
NH2*+*=NH*+H*	2.60	1.43	2.31	1.70	1.92	0.48	1.25	0.18	1.46	0.17	1.41	-0.76	1.09	-0.28
NH*+*=N*+H*	3.06	1.57	2.09	1.58	2.60	0.80	1.19	0.08	1.58	0.08	1.00	0.14	1.44	0.07
N*+O*=NO*+*	2.20	-0.86	0.75	-2.36	2.69	1.30	2.06	0.72	2.44	0.00	0.32	-0.63	2.57	1.24
$2N^*=N_2^*+*/N_2(g)+2^*$	1.82	-4.52	0.75	-5.63	2.39	-1.08	1.66	-0.19	4.25	-0.49	1.02	-1.60	3.54	0.86
$N^*+NO^*=N_2O^*+*/N_2O(g)+2*$	1.40	-2.57	0.97	-2.82	1.15	0.00	1.28	1.28	1.78	1.10	2.25	0.65	2.09	1.67
O2*+*=2O*	1.03	-1.22	0.57	-0.12	0.21	-2.96	-	-	0.38	-1.45	0.25	-1.41	0.27	-2.45
$NH_3+*=NH_3*$	-	-0.38	-	-0.50	-	-0.60	-	-1.27	-	-0.79	-	-1.09	-	-1.02
$O_2 + *= O_2^*$	-	-0.63	-	-0.14	-	-1.05		-4.28	-	-1.04	-	-1.21	-	-2.00
NO*=NO+*	-	0.51	-	0.64	-	1.21	-	2.63	-	2.20	-	2.30	-	2.78
$N_2^* = N_2^+ *$	-	-	-	-	-	-	-	0.76	-	0.37	-	0.47	-	0.72
$N_2O^*\!\!=\!\!N_2O\!\!+\!\!*$	-	-	-	-	-	-	-	0.78	-	0.22	-	0.25	-	1.06
$H_2O^*=H_2O^{+*}$	-	-	-	-	-	0.17	-	0.32	-	0.17	-	0.14	-	0.28
O*+H*=OH*+*	0.91	-1.59	0.64	-1.36	1.23	-0.51	0.83	0.06	1.16	-0.30	0.56	-0.41	1.00	0.22
$2OH^*=H_2O^*+O^*/H_2O(g)+O^*+*$	0.61	0.54	0.59	0.36	0.55	0.26	0.77	0.13	0.58	0.29	1.26	0.10	0.54	0.19

Table S5. The detailed reaction barriers (E_a) and enthalpy (E_n) of elementary steps involved in NH₃-SCO at (111) (Units: eV).

	Ag(1	11)	Au(111)	Cu(111)	Ir(1	11)	Pd(111)	Pt(111)	Rh(111)	Ru((0001)
	E_{a}	E_n	E_a	En	E_{a}	E_n	E_{a}	$\mathbf{E}_{\mathbf{n}}$								
$N{H_3}^*{+}O{H}^*{=}N{H_2}^*{+}H_2O^*\!/H_2O(g){+}^*$	1.05	0.57	0.91	0.12	0.68	0.38	1.15	0.24	0.73	0.03	1.08	0.15	0.92	0.23	1.54	0.67
$NH_2^*+OH^*=NH^*+H_2O^*/H_2O(g)+^*$	0.59	0.49	1.51	-0.11	0.56	0.43	0.76	-0.27	1.49	-0.19	0.60	-0.46	0.53	-0.05	2.13	0.06
$NH^*+OH^*=N^*+H_2O^*/H_2O(g)+^*$	1.03	0.74	0.75	-0.05	1.11	0.78	0.61	-0.06	0.31	-0.45	0.63	-0.37	0.88	-0.18	1.29	0.38
NH3*+O*=NH2*+OH*	0.70	0.04	0.99	0.23	0.79	0.11	1.37	0.37	1.29	0.49	1.28	0.41	1.37	0.51	1.19	0.36
NH2*+O*=NH*+OH*	0.85	-0.03	1.42	-0.02	0.85	0.07	1.10	0.05	1.34	0.00	0.99	-0.10	1.13	0.06	0.86	-0.15
NH*+O*=N*+OH*	1.39	0.25	1.29	0.16	1.61	0.57	1.17	0.46	1.27	0.29	1.54	0.29	1.55	0.29	1.14	0.30
NH3*+*=NH2*+H*	2.19	1.47	2.46	1.61	1.83	0.67	1.64	0.44	1.50	0.24	1.49	0.66	1.59	0.10	1.25	-0.12
$NH_2^{*+*}=NH^{*}+H^{*}$	2.35	1.61	3.23	1.40	1.56	0.58	1.19	-0.04	1.08	-0.28	1.32	0.03	1.42	-0.20	1.39	-0.17
NH*+*=N*+H*	2.69	2.02	2.23	1.70	2.13	1.27	1.26	0.37	1.47	0.12	1.76	0.41	1.22	0.03	0.85	-0.63
N*+O*=NO*+*	1.25	-2.12	1.25	-2.11	1.57	-0.36	2.00	0.49	2.36	-0.26	2.28	-0.19	2.58	0.87	3.23	2.06
$2N^*=N_2^*+*/N_2(g)+2^*$	0.96	-6.28	1.75	-5.51	0.99	-3.28	2.44	-0.39	2.40	-0.72	2.38	-1.01	1.67	0.19	3.06	1.42
$N^*+NO^*=N_2O^*+*/N_2O(g)+2*$	0.52	-3.73	0.07	-3.21	0.67	-1.33	2.04	1.30	2.03	1.37	1.53	0.90	2.15	1.77	2.14	2.07
O2*+*=2O*	0.95	-0.69	1.54	-0.36	0.19	-2.22	0.06	-2.30	0.63	-1.83	0.68	-1.54	0.10	-2.56	-	-
NH3+*=NH3*	-	-0.30	-	-0.33		-0.48	-	-0.95	-	-0.83	-	-0.89	-	-0.97	-	-0.95
$O_2 + * = O_2^*$	-	0.18	-	0.70		-0.56	-	-1.07	-	-0.96	-	-0.53	-	-1.62		-5.07
NO*=NO+*	-	0.25	-	0.14	-	1.03	-	-2.00	-	-2.48	-	-1.76	-	2.59	-	2.74
$N_2^* = N_2 + *$		-	-	-	-	-	-	0.37	-	0.29	-	-0.14	-	0.64	-	0.66
$N_2O^* = N_2O^{+*}$	-	-		-	-		-	0.04	-	0.06	-		-	0.43	-	0.89

Fig. S1. The fitting relations between reaction enthalpy (E(enthalpy)) and binding energy (E(initial), E(final)) of reactants (initial states) and products (final states) for

direct, O-assisted and OH assisted NH_3 dissociation (denoted as NH_xd , NH_xOd and NH_xOHd , x=1, 2, 3) as well as NO, N₂ and N₂O formation (denoted NO, N₂ and N₂O) on (100).

Fig. S2. The fitting relations between reaction enthalpy (E(enthalpy)) and binding energy (E(initial), E(final)) of reactants (initial states) and products (final states) for direct, O-assisted and OH assisted NH_3 dissociation (denoted as NH_x d, NH_x Od and

NH_xOHd, x=1, 2, 3) as well as NO, N_2 and N_2O formation (denoted NO, N_2 and N_2O) on (111).

Fig. S3. The fitting relations of the barriers against the energy of initial and final states and enthalpy for O-assisted NH_3 scission and NO, N_2 and N_2O formation on (111), respectively.

Fig. S4. The fitting relations of the barriers against the energy of initial and final states and enthalpy for O-assisted NH_3 scission and NO, N_2 and N_2O formation on (100), respectively.

Fig. S5. The generation rates of N_2 on (100) and (111).

Fig. S6. The side and top views of binding configuration of N atom at Cu(100) facet.

The rate determining steps analysis on metallic catalysts.

Fig. S7. The coverage and degrees of rate control of NH_3 -SCO on representative Au(111), Pt(111) and Rh(111).

Au(111), Pt(111) and Rh(111) possess weak, moderate and strong N and O binding energy, respectively and thus could be reasonable representative of metal catalysts to figure out the rate-determining steps (RDS) of NH₃-SCO. Species coverage and degree of rate control (DRC) of elementary steps are calculated to identify the RDS,^{1,2} as shown in Figure Sx. It is found in Fig. S7 (a) and (b) that for Au(111) with weak binding energy of intermediates, vacant site (*) is main intermediate and surface oxygen (O^{*}) assisted NH₃ dissociation (NH₃^{*}+O^{*}=NH₂^{*}+OH^{*}) becomes the RDS, which indicates that promoting the step through increasing the amounts of NH₃^{*} and O^{*} or decreasing the reaction barriers could achieve the enhancement of total reactivity. Then as for Pt(111) with moderate binding ability in Fig. S7 (c) and (d), the amount of O^{*} decreases until near to zero with increasing temperatures and vacant site (*) becomes the primary specie above 800 K. In the temperature zone (below 800K), NH₃^{*}+O^{*}=NH₂^{*}+OH^{*} is primary RDS but the DRC gradually decreases with the temperature increasing, indicating the weaker and weaker influence on total reactivity. At the temperature above 800K, the formation of NO^{*} is the key RDS with positive enhancing effect on reactivity. NH₂ scission also plays a key role that direct and O-assisted NH₂ scission possess the promoting effect while OH-assisted process exhibits the inhibition effect on NH₃-SCO. Finally, taking account of Rh(111) with the strong binding capacity for intermediates in Fig. S7 (e) and (f), it is seen that NH₃*+O*=NH₂*+OH* is the primary RDS, which could be ascribed that plenty of surface O* specie poisons the surface sites and inhibits the reaction proceeding. In general, it could be concluded that oxygen assisted NH₃ dissociation and the recombination of surface species for product formation are the key RDSs of NH₃-SCO for metal catalysts.

temperatures for Cu	(100) and Cu(111).		
	Cu(1	00)	Cu(111)
Temperature	$\theta(N^*)$	$\theta(O^*)$	$\theta(N^*)$	θ(O *)
500 K	5.01E-07	1.00	4.54E-12	1.00
600 K	1.08E-07	1.00	5.69E-12	1.00
700 K	5.85E-08	1.00	4.25E-12	0.90
800 K	3.62E-08	1.00	6.63E-13	0.27
900 K	2.38E-08	0.99	2.65E-14	0.03
1000 K	1.29E-08	0.87	1.24E-15	3.65E-03
1100 K	1.91E-09	0.39	8.43E-17	6.68E-04
1200 K	6.37E-11	0.08	9.21E-18	1.61E-04

Table S6. The coverage of surface N and O species ($\theta(N^*)$ and $\theta(O^*)$) at different

The origin of N₂ selectivity of Cu(100).

The N₂ selectivity is defined as the ratio of N₂ formation rates and total NH₃ oxidation rates and the NH₃ oxidation rate should equal to the sum of N₂, NO and N₂O production rates. Taking account of N₂O formation from the recombination of surface N and NO species, N₂ and NO production processes become the keys influencing the selectivity. Therefore, we compare the reaction barriers and related N and O binding energy to reveal the factors of controlling the selectivity. Firstly, the difference between formation barriers of NO and N₂ ($\Delta E_{a,NO}$ - $\Delta E_{a,N2}$) are 0.30 and 0.58 eV for Cu(100) and Cu(111) respectively, which indicates N₂ formation is relative favorable in kinetics for Cu(100) and Cu(111), compared with NO formation. Then, it is found that Cu(100)exhibits stronger N and O atoms binding ability, which means that Cu(100) could provide more surface N and O species (Table S6). In the NH₃-SCO, more surface oxygen species could better assist the ammonia scission to produce more N species and enough surface N species could promote N_2 formation, Thus, it could be concluded that favorable N and O binding capacity are the keys of the superior N₂ selectivity of Cu(100). Finally, combining with the Figure of N_2 selectivity versus E(N^{*}) and $E(N^*)+E(O^*)$ in manuscript (Fig. 9 of the manuscript), it is further found that oxygen binding ability is the feasible way for higher N₂ selectivity of Cu(111). Although Cu(100) possess comparable $E(N^*)$ compared with Pt(100), stronger oxygen binding prompts higher N₂ selectivity of Cu(100). Therefore, we believe that Cu(100) possesses relative strong oxygen binding ability and achieves the superior N₂ selectivity.

10

The information about binding energy of surface species on alloy

catalysts.

		(100)			(111)	1
	$E(N^*)$	$E(O^*)$	$E(N^*)+E(O^*)$	$E(N^*)$	$E(O^*)$	$E(N^*)+E(O^*)$
Ag ₃ Au ₁	-2.891	-0.553	-3.444	-2.354	-0.340	-2.694
Ag ₃ Cu ₁	-3.946	-1.709	-5.655	-2.936	-1.119	-4.055
Ag_3Pd_1	-4.033	-1.061	-5.094	-3.036	-0.692	-3.728
Ag_3Pt_1	-4.725	-1.196	-5.921	-3.670	-0.990	-4.660
Ag_3Ir_1	-7.279	-3.171	-10.450	-5.010	-1.786	-6.796
Ag_3Rh_1	-6.436	-2.453	-8.889	-4.658	-1.608	-6.266
Ag_3Ru_1	-8.398	-4.564	-12.962	-5.882	-2.602	-8.484
Au_3Ag_1	-2.827	-0.507	-3.334	-2.813	-0.331	-3.144
Au ₃ Cu ₁	-3.718	-1.348	-5.066	-3.131	-0.844	-3.975
Au_3Pd_1	-3.934	-0.653	-4.587	-3.332	-0.421	-3.753
Au_3Pt_1	-4.650	-0.978	-5.628	-3.829	-0.721	-4.550
Au_3Ir_1	-6.190	-2.329	-8.519	-4.838	-1.390	-6.228
Au_3Rh_1	-5.789	-1.780	-7.569	-4.453	-1.099	-5.552
Au_3Ru_1	-6.868	-3.550	-10.418	-5.550	-2.263	-7.813
Cu ₃ Ag ₁	-4.009	-1.672	-5.681	-3.637	-1.459	-5.096
Cu_3Au_1	-3.519	-0.961	-4.480	-3.396	-1.328	-4.724
Cu_3Pd_1	-4.499	-1.396	-5.895	-3.760	-1.644	-5.404
Cu_3Pt_1	-4.811	-1.236	-6.047	-3.976	-1.455	-5.431
Cu_3Ir_1	-6.676	-3.081	-9.757	-5.001	-1.861	-6.862
Cu_3Rh_1	-5.940	-2.277	-8.217	-4.782	-1.787	-6.569
Cu_3Ru_1	-7.073	-3.296	-10.369	-5.596	-2.439	-8.035
Pd_3Ag_1	-3.888	-0.853	-4.741	-4.817	-1.096	-5.913
Pd_3Au_1	-3.774	-0.407	-4.181	-4.752	-1.095	-5.847
Pd_3Cu_1	-4.673	-1.300	-5.973	-4.733	-1.269	-6.002
Pd_3Pt_1	-4.968	-1.166	-6.134	-5.046	-1.424	-6.470
Pd_3Ir_1	-6.081	-2.038	-8.119	-5.527	-1.849	-7.376
Pd_3Rh_1	-5.819	-1.950	-7.769	-5.490	-1.899	-7.389
Pd_3Ru_1	-6.954	-3.015	-9.969	-5.959	-2.375	-8.334
Pt_3Ag_1	-4.397	-1.068	-5.465	-5.076	-1.086	-6.162
Pt_3Au_1	-3.975	-0.600	-4.575	-4.882	-0.964	-5.846
Pt_3Cu_1	-4.420	-1.203	-5.623	-4.980	-1.309	-6.289
Pt_3Pd_1	-4.689	-1.150	-5.839	-5.069	-1.297	-6.366
Pt_3Ir_1	-5.198	-1.819	-7.017	-5.230	-1.532	-6.762

Table S7. The binding energies of N and O atoms ($E(N^*)$ and $E(O^*)$, unit: eV) at (100) and (111) facets of different alloy systems.

Pt_3Rh_1	-5.079	-1.636	-6.715	-5.285	-1.612	-6.897
Pt_3Ru_1	-4.741	-1.133	-5.874	-5.581	-1.952	-7.533
Ir_3Ag_1	-5.595	-1.913	-7.508	-6.264	-2.433	-8.697
Ir ₃ Au ₁	-4.783	-1.340	-6.123	-6.025	-2.286	-8.311
Ir ₃ Cu ₁	-5.843	-2.107	-7.950	-6.272	-2.453	-8.725
Ir_3Pd_1	-5.435	-1.799	-7.234	-6.086	-2.351	-8.437
Ir_3Pt_1	-5.086	-1.635	-6.721	-5.737	-2.176	-7.913
Ir_3Rh_1	-5.736	-2.089	-7.825	-5.648	-1.955	-7.603
Ir_3Ru_1	-5.555	-2.050	-7.605	-5.802	-2.148	-7.950
Rh_3Ag_1	-5.538	-1.906	-7.444	-6.308	-2.567	-8.875
Rh ₃ Au ₁	-4.947	-1.198	-6.145	-5.995	-2.479	-8.474
Rh ₃ Cu ₁	-5.807	-2.118	-7.925	-6.294	-2.601	-8.895
Rh_3Pd_1	-5.515	-1.833	-7.348	-6.049	-2.499	-8.548
Rh_3Pt_1	-6.015	-2.208	-8.223	-5.710	-2.290	-8.000
Rh_3Ir_1	-5.845	-2.206	-8.051	-5.655	-2.085	-7.740
Rh ₃ Ru ₁	-5.623	-2.164	-7.787	-5.942	-2.376	-8.318

Table S8.	The site ty	ypes and	binding	atoms	of N	and () binding	configurations	s on	the
alloy (100)) facets.									

	N bi	nding	O bin	ding
	Site type	Binding atoms	Site type	Binding atoms
Ag ₃ Au ₁	4-fold	['Au', 'Au', 'Ag', 'Ag']	4-fold	['Au','Au', 'Ag', 'Ag']
Ag ₃ Cu ₁	4-fold	['Ag', 'Ag','Cu', 'Cu']	4-fold	['Ag', 'Ag','Cu', 'Cu']
Ag_3Pd_1	4-fold	['Ag', 'Ag','Pd','Pd']	4-fold	['Ag', 'Ag','Pd','Pd']
Ag_3Pt_1	4-fold	['Ag', 'Ag', 'Pt','Pt']	4-fold	['Pt', 'Pt', 'Ag', 'Ag']
Ag_3Ir_1	4-fold	['Ag', 'Ag', 'Ir','Ir']	4-fold	['Ag', 'Ag', 'Ir','Ir']
Ag_3Rh_1	4-fold	['Ag', 'Ag', 'Rh','Rh']	4-fold	['Ag', 'Ag', 'Rh','Rh']
Ag_3Ru_1	4-fold	['Ag', 'Ag', 'Ru','Ru']	4-fold	['Ag', 'Ag', 'Ru','Ru']
Au_3Ag_1	4-fold	['Ag', 'Ag', 'Au', 'Au']	4-fold	['Ag', 'Ag', 'Au', 'Au']
Au_3Cu_1	4-fold	['Au', 'Au', 'Cu', 'Cu']	4-fold	['Au', 'Au', 'Cu', 'Cu']
Au_3Pd_1	4-fold	['Pd', 'Pd', 'Au', 'Au']	4-fold	['Pd', 'Pd', 'Au', 'Au']
Au_3Pt_1	4-fold	['Pt', 'Pt', 'Au', 'Au']	bridge	['Pt', 'Au']
Au_3Ir_1	4-fold	['Au', 'Au', 'Ir', 'Ir']	4-fold	['Ir', 'Ir']
Au_3Rh_1	4-fold	['Rh','Rh', 'Au', 'Au']	4-fold	['Rh', 'Rh']
Au_3Ru_1	4-fold	['Au', 'Au', 'Ru','Ru']	4-fold	['Ru', 'Ru']
Cu_3Ag_1	4-fold	['Ag', 'Ag', 'Cu', 'Cu']	4-fold	['Ag', 'Ag', 'Cu', 'Cu']
Cu_3Au_1	4-fold	['Au', 'Au', 'Cu', 'Cu']	4-fold	['Au', 'Au', 'Cu', 'Cu']
Cu_3Pd_1	4-fold	['Pd', 'Pd', 'Cu', 'Cu']	4-fold	['Pd', 'Pd', 'Cu', 'Cu']
Cu_3Pt_1	4-fold	['Pt', 'Pt', 'Cu', 'Cu']	4-fold	['Pt', 'Pt', 'Cu', 'Cu']
Cu_3Ir_1	4-fold	['Cu', 'Cu', 'Ir', 'Ir']	bridge	['Cu', 'Ir']
Cu_3Rh_1	4-fold	['Cu', 'Cu', 'Rh', 'Rh']	4-fold	['Rh', 'Rh', 'Cu', 'Cu']
Cu_3Ru_1	4-fold	['Ru', 'Ru', 'Cu', 'Cu']	bridge	['Ru', 'Cu']
Pd_3Ag_1	4-fold	['Pd', 'Pd', 'Ag','Ag',]	4-fold	['Pd', 'Pd', 'Ag', 'Ag']
Pd_3Au_1	4-fold	['Pd', 'Pd', 'Au', 'Au']	4-fold	['Pd', 'Pd', 'Au', 'Au']

Pd_3Cu_1	4-fold	['Pd', 'Pd', 'Cu', 'Cu']	4-fold	['Pd', 'Pd', 'Cu', 'Cu']
Pd_3Pt_1	4-fold	['Pd', 'Pd', 'Pt','Pt']	bridge	['Pt', 'Pd']
Pd_3Ir_1	4-fold	['Pd', 'Pd', 'Ir', 'Ir']	4-fold	['Pd', 'Pd', 'Ir', 'Ir']
Pd_3Rh_1	4-fold	['Rh', 'Rh', 'Pd', 'Pd']	4-fold	['Rh', 'Rh', 'Pd', 'Pd']
Pd_3Ru_1	4-fold	['Ru', 'Ru', 'Pd', 'Pd']	4-fold	['Ru', 'Ru', 'Pd', 'Pd']
Pt ₃ Ag ₁	4-fold	['Pt', 'Pt', 'Ag', 'Ag']	4-fold	['Pt', 'Pt', 'Ag', 'Ag']
Pt_3Au_1	4-fold	['Pt', 'Pt', 'Au', 'Au']	bridge	['Pt', 'Au']
Pt ₃ Cu ₁	4-fold	['Pt', 'Pt', 'Pt', 'Pt']	bridge	['Pt', 'Pt']
Pt_3Pd_1	4-fold	['Pt', 'Pt', 'Pd', 'Pd']	bridge	['Pt', 'Pd']
Pt_3Ir_1	bridge	['Pt', 'Ir']	bridge	['Pt', 'Ir']
Pt_3Rh_1	4-fold	['Pt', 'Pt', 'Rh', 'Rh']	bridge	['Pt', 'Rh']
Pt_3Ru_1	4-fold	['Pt', 'Pt', 'Pt', 'Pt']	bridge	['Pt', 'Pt']
Ir ₃ Ag ₁	4-fold	['Ag', 'Ag', 'Ir', 'Ir']	top	['Ir']
Ir_3Au_1	4-fold	['Au', 'Au', 'Ir', 'Ir']	top	['Ir']
Ir ₃ Cu ₁	4-fold	['Cu', 'Cu', 'Ir', 'Ir']	4-fold	['Cu', 'Cu', 'Ir', 'Ir']
Ir_3Pd_1	4-fold	['Pd', 'Pd', 'Ir', 'Ir']	top	['Ir']
Ir_3Pt_1	4-fold	['Pt', 'Pt', 'Ir', 'Ir']	bridge	['Pt', 'Ir']
Ir_3Rh_1	4-fold	['Rh', 'Rh', 'Ir', 'Ir']	bridge	['Rh', 'Ir']
Ir_3Ru_1	4-fold	['Ir', 'Ir', 'Ir', 'Ir']	bridge	['Ir', 'Ir']
Rh_3Ag_1	4-fold	['Rh', 'Rh', 'Ag', 'Ag']	4-fold	['Rh', 'Rh', 'Ag', 'Ag']
Rh_3Au_1	4-fold	['Rh', 'Rh', 'Au', 'Au']	4-fold	['Rh', 'Rh', 'Au', 'Au']
Rh_3Cu_1	4-fold	['Rh', 'Rh', 'Cu', 'Cu']	4-fold	['Rh', 'Rh', 'Cu', 'Cu']
Rh_3Pd_1	4-fold	['Rh', 'Rh', 'Pd', 'Pd']	4-fold	['Rh', 'Rh', 'Pd', 'Pd']
Rh_3Pt_1	4-fold	['Rh', 'Rh', 'Rh', 'Rh']	4-fold	['Rh', 'Rh', 'Rh', 'Rh']
Rh_3Ir_1	4-fold	['Rh', 'Rh', 'Rh', 'Rh']	4-fold	['Rh', 'Rh', 'Rh', 'Rh']
Rh_3Ru_1	4-fold	['Rh', 'Rh', 'Rh', 'Rh']	4-fold	['Rh', 'Rh', 'Rh', 'Rh']

Note: The inconsistence between site types and the numbers of binding atoms for the O binding on (100) of Au_3Ir_1 , Au_3Rh_1 and Au_3Ru_1 is because the surface reconstruction makes the adsorbed oxygen only bind with diagonal two atoms of 4-fold sites.

	N binding		O binding		
	Site type	Binding atoms	Site type	Binding atoms	
Ag ₃ Au ₁	3-fold	['Au', 'Ag', 'Ag']	3-fold	['Au', 'Ag', 'Ag']	
Ag ₃ Cu ₁	3-fold	['Ag', 'Ag', 'Cu']	3-fold	['Ag', 'Ag', 'Cu']	
Ag_3Pd_1	3-fold	['Ag', 'Ag', 'Pd']	3-fold	['Ag', 'Ag', 'Pd']	
Ag_3Pt_1	3-fold	['Ag', 'Ag', 'Pt']	3-fold	['Ag', 'Ag', 'Pt']	
Ag_3Ir_1	top	['Ir']	top	['Ir']	
Ag_3Rh_1	3-fold	['Ag', 'Ag', 'Rh']	3-fold	['Ag', 'Ag', 'Rh']	
Ag_3Ru_1	3-fold	['Ag', 'Ag', 'Ru']	3-fold	['Ag', 'Ag', 'Ru']	
Au_3Ag_1	3-fold	['Au', 'Au', 'Au']	3-fold	['Au', 'Au', 'Au']	
Au ₃ Cu ₁	3-fold	['Au', 'Au', 'Cu']	3-fold	['Au', 'Au', 'Cu']	

Table S9. The site types and binding atoms of N and O binding configurations on the alloy (111) facets.

Au ₃ Pd ₁	3-fold	['Pd', 'Au', 'Au']	3-fold	['Pd', 'Au', 'Au']
Au_3Pt_1	3-fold	['Au', 'Au', 'Pt']	3-fold	['Au', 'Au', 'Pt']
Au_3Ir_1	3-fold	['Au', 'Au', 'Ir']	top	['Ir']
Au_3Rh_1	3-fold	['Rh', 'Au', 'Au']	3-fold	['Rh', 'Au', 'Au']
Au_3Ru_1	3-fold	['Au', 'Au', 'Ru']	top	['Ru']
Cu_3Ag_1	3-fold	['Cu', 'Cu', 'Cu']	3-fold	['Cu', 'Cu', 'Cu']
Cu_3Au_1	3-fold	['Cu', 'Cu', 'Cu']	3-fold	['Cu', 'Cu', 'Cu']
Cu_3Pd_1	3-fold	['Cu', 'Cu', 'Cu']	3-fold	['Cu', 'Cu', 'Cu']
Cu_3Pt_1	3-fold	['Cu', 'Cu', 'Pt']	3-fold	['Cu', 'Cu', 'Pt']
Cu ₃ Ir ₁	3-fold	['Cu', 'Cu', 'Ir']	3-fold	['Cu', 'Cu', 'Ir']
Cu_3Rh_1	3-fold	['Cu', 'Cu', 'Rh']	3-fold	['Cu', 'Cu', 'Rh']
Cu_3Ru_1	3-fold	['Cu', 'Cu', 'Ru']	3-fold	['Cu', 'Cu', 'Ru']
Pd_3Ag_1	3-fold	['Pd', 'Pd', 'Pd']	3-fold	['Pd', 'Pd', 'Pd']
Pd_3Au_1	3-fold	['Pd', 'Pd', 'Pd']	3-fold	['Pd', 'Pd', 'Pd']
Pd_3Cu_1	3-fold	['Pd', 'Pd', 'Pd']	3-fold	['Pd', 'Pd', 'Pd']
Pd_3Pt_1	3-fold	['Pd', 'Pt', 'Pd']	3-fold	['Pd', 'Pt', 'Pd']
Pd_3Ir_1	3-fold	['Ir', 'Pd', 'Pd']	3-fold	['Ir', 'Pd', 'Pd']
Pd_3Rh_1	3-fold	['Pd', 'Pd', 'Rh']	3-fold	['Pd', 'Pd', 'Rh']
Pd_3Ru_1	3-fold	['Pd', 'Pd', 'Ru']	3-fold	['Pd', 'Pd', 'Ru']
Pt_3Ag_1	3-fold	['Pt', 'Pt', 'Pt']	3-fold	['Pt', 'Pt', 'Pt']
Pt_3Au_1	3-fold	['Pt', 'Pt', 'Pt']	3-fold	['Pt', 'Pt', 'Pt']
Pt ₃ Cu ₁	3-fold	['Pt', 'Pt', 'Pt']	3-fold	['Pt', 'Pt', 'Pt']
Pt_3Pd_1	3-fold	['Pt', 'Pt', 'Pt']	3-fold	['Pt', 'Pt', 'Pt']
Pt_3Ir_1	3-fold	['Pt', 'Pt', 'Ir']	3-fold	['Pt', 'Pt', 'Ir']
Pt_3Rh_1	3-fold	['Pt', 'Rh', 'Pt']	3-fold	['Pt', 'Rh', 'Pt']
Pt_3Ru_1	3-fold	['Pt', 'Ru', 'Pt']	3-fold	['Pt', 'Ru', 'Pt']
Ir_3Ag_1	3-fold	['Ir', 'Ir', 'Ir']	3-fold	['Ir', 'Ir', 'Ir']
Ir_3Au_1	3-fold	['Ir', 'Ir', 'Ir']	3-fold	['Ir', 'Ir', 'Ir']
Ir ₃ Cu ₁	3-fold	['Ir', 'Ir', 'Ir']	3-fold	['Ir', 'Ir', 'Ir']
Ir_3Pd_1	3-fold	['Ir', 'Ir', 'Ir']	3-fold	['Ir', 'Ir', 'Ir']
Ir_3Pt_1	3-fold	['Ir', 'Ir', 'Ir']	3-fold	['Ir', 'Ir', 'Ir']
Ir ₃ Rh ₁	3-fold	['Ir', 'Ir', 'Ir']	3-fold	['Ir', 'Ir', 'Ir']
Ir_3Ru_1	3-fold	['Ir', 'Ir', 'Ru']	3-fold	['Ir', 'Ir', 'Ru']
Rh ₃ Ag ₁	3-fold	['Rh', 'Rh', 'Rh']	3-fold	['Rh', 'Rh', 'Rh']
Rh ₃ Au ₁	3-fold	['Rh', 'Rh', 'Rh']	3-fold	['Rh', 'Rh', 'Rh']
Rh_3Cu_1	3-fold	['Rh', 'Rh', 'Rh']	3-fold	['Rh', 'Rh', 'Rh']
Rh ₃ Pd ₁	3-fold	['Rh', 'Rh', 'Rh']	3-fold	['Rh', 'Rh', 'Rh']
Rh ₃ Pt ₁	3-fold	['Rh', 'Rh', 'Rh']	3-fold	['Rh', 'Rh', 'Rh']
Rh ₃ Ir ₁	3-fold	['Ir', 'Rh', 'Rh']	3-fold	['Ir', 'Rh', 'Rh']
Rh_3Ru_1	3-fold	['Rh', 'Rh', 'Ru']	3-fold	['Rh', 'Rh', 'Ru']

Fig. S8. The distribution of the alloyed catalysts on the contours of N_2 reactivity.

Fig. S9. The distribution of the alloyed catalysts on the contours of N_2 selectivity.

NH ₃ oxidation		N ₂ generation			N ₂ selectivity		
	$E(N^*)$		$E(N^*)$	$E(O^*)$		$E(N^*)+E(O^*)$	$E(N^*)$
Au ₃ Pd ₁	-3.934	Pt ₃ Ir ₁	-5.198	-1.819	Pt ₃ Ir ₁	-7.017	-5.198
Au_3Pt_1	-4.650	Ir ₃ Pt ₁	-5.086	-1.635	Ir ₃ Pt ₁	-6.721	-5.086
Cu_3Ag_1	-4.009	Pt_3Rh_1	-5.079	-1.636	Pt_3Rh_1	-6.715	-5.079
Cu_3Pd_1	-4.499	Ir ₃ Pd ₁	-5.435	-1.799			
Cu_3Pt_1	-4.811	Rh_3Pd_1	-5.515	-1.833			
Pd_3Cu_1	-4.673	Rh ₃ Ag ₁	-5.538	-1.906			
Pd_3Pt_1	-4.968	Ir ₃ Ag ₁	5.595	-1.913			
Pt_3Ag_1	-4.397	Ir ₃ Au ₁	-4.783	-1.340			
Pt_3Au_1	-3.975						
Pt ₃ Cu ₁	-4.420						
Pt_3Pd_1	-4.689						
Pt_3Rh_1	-5.079						
Pt_3Ru_1	-4.741						
Ir ₃ Au ₁	-4.783						
Ir_3Pt_1	-5.086						

Table S10. The obtained alloyed catalysts with (100) facets.

 Rh_3Au_1 -4.947

NH ₃ oxidation		N ₂ generation			N ₂ selectivity		
	$E(N^*)$		$E(N^*)$	$E(O^*)$		$E(N^*)+E(O^*)$	$E(N^*)$
Ag ₃ Ir ₁	-5.010	Au ₃ Ir ₁	-4.838	-1.390	Cu ₃ Rh ₁	-6.569	-4.782
Ag_3Rh_1	-4.658	Au_3Rh_1	-4.453	-1.099	Cu ₃ Ru ₁	-8.035	-5.596
Au_3Ir_1	-4.838	Pd_3Ag_1	-4.817	-1.096	Ir_3Pt_1	-7.913	-5.737
Au_3Rh_1	-4.453	Pd_3Au_1	-4.752	-1.095	Ir ₃ Ru ₁	-7.950	-5.802
Cu_3Pt_1	-3.976	Pd ₃ Cu ₁	-4.733	-1.269	Rh ₃ Pt ₁	-8.000	-5.710
Cu_3Ir_1	-5.001	Pd_3Pt_1	-5.046	-1.424			
Cu_3Rh_1	-4.782	Pt ₃ Ag ₁	-5.076	-1.086			
Pd_3Ag_1	-4.817	Pt ₃ Au ₁	-4.882	-0.964			
Pd_3Au_1	-4.752	Pt ₃ Cu ₁	-4.980	-1.309			
Pd_3Cu_1	-4.733	Pt_3Pd_1	-5.069	-1.297			
Pd_3Pt_1	-5.046	Ag_3Rh_1	-4.658	-1.608			
Pt_3Ag_1	-5.076						
Pt_3Au_1	-4.882						
Pt_3Cu_1	-4.980						
Pt ₃ Pd ₁	-5.069						

Table S11. The obtained alloyed catalysts with (111) facets.

Fig. S10. The distribution of the obtained alloyed catalysts with high selectivity on the volcano relation of NH_3 oxidation activity.

Fig. S11.The COHP bonding analysis on Pt-N, Rh-N, Pt-O and Rh-O for N and O binding on Pt(100) and $Pt_3Rh_1(100)$.

The stability analysis of alloy catalysts.

The formation energy (E_f) of bulk alloy systems is calculated as: $E_f = E_{alloy} - N_A E_{A(bulk)} - N_B E_{B(bulk)}$

Where, E_{alloy} , $E_{A(bulk)}$ and $E_{B(bulk)}$ are bulk energy of alloy, metal A and metal B, respectively and N_A and N_B are the numbers of metallic atoms A and B in alloy systems, respectively.

Table S12. The bulk energy of alloy systems from DFT calculation and corresponding formation energy (E_f) of alloy systems and green items are potential alloy catalysts through high throughput screening based on the catalytic descriptors.

6 6	01 0	,		1	
Systems	Energy(eV)	$E_{f}(eV)$	Systems	Energy(eV)	$E_{f}(eV)$
Ag_3Au_1	-11.469	-0.182	Pd_3Ag_1	-18.399	-0.032
Ag ₃ Cu ₁	-11.411	0.381	Pd_3Au_1	-19.025	-0.167
Ag_3Ir_1	-15.316	1.637	Pd ₃ Cu ₁	-19.566	-0.203
Ag_3Pd_1	-13.587	-0.267	Pd_3Ir_1	-23.960	0.565
Ag_3Pt_1	-14.197	-0.022	Pd_3Pt_1	-21.852	-0.106
Ag_3Rh_1	-14.486	0.898	Pd_3Rh_1	-22.622	0.333
Ag_3Ru_1	-15.059	2.338	Pd_3Ru_1	-24.084	0.884
Au_3Ag_1	-12.463	-0.195	Pt_3Ag_1	-20.776	0.158
Au ₃ Cu ₁	-13.231	0.032	Pt_3Au_1	-21.121	0.304
Au ₃ Ir ₁	-16.995	1.430	Pt_3Cu_1	-22.266	-0.336
Au_3Pd_1	-15.180	-0.388	Pt ₃ Ir ₁	-26.764	0.328
Au_3Pt_1	-15.615	0.033	Pt_3Pd_1	-23.563	-0.105
Au_3Rh_1	-16.231	0.625	Pt ₃ Rh ₁	-25.526	-0.004
Au_3Ru_1	-17.056	1.813	Pt_3Ru_1	-27.255	0.280
Cu ₃ Ag ₁	-13.094	0.690	Rh ₃ Ag ₁	-23.349	1.211
Cu ₃ Au ₁	-14.061	0.213	Rh_3Au_1	-24.190	0.860
Cu_3Ir_1	-19.491	0.450	Rh ₃ Cu ₁	-25.196	0.359

Cu_3Pt_1 -17.640 -0.477 Rh_3Pd_1 -26.704 0.	379 . 047
	.047
Cu ₃ Rh ₁ -18.252 3.608 Rh ₃ Pt ₁ -27.986 -0	••••/
$Cu_{3}Ru_{1} -19.236 1.148 Rh_{3}Ru_{1} -31.033 0.$	127
Ir ₃ Ag ₁ -27.344 1.925	
Ir ₃ Au ₁ -27.996 1.764	
Ir ₃ Cu ₁ -29.441 0.824	
Ir ₃ Pd ₁ -31.114 0.679	
Ir ₃ Pt ₁ -32.257 0.392	
Ir_3Rh_1 -33.902 -0.045	
Ir_3Ru_1 -36.040 -0.170	

Reference:

- 1 H. Ma, W. F. Schneider, ACS Catal., 2019, 9, 2407–2414.
- 2 H. Ma, W. Schneider, J. Catal., 2020, 383, 322-330.