Electronic Supporting Information

In-situ observation of highly oxidized Ru species in Ru/CeO₂ catalyst under propane oxidation

Oleksii Bezkrovnyi^{1*}, Mykhailo Vorokhta^{2*}, Mirosława Pawlyta³, Maciej Ptak¹, Lesia Piliai²,

Xianxian Xie², Thu Ngan Dinhová², Ivan Khalakhan², Iva Matolínová², Leszek Kepinski¹

¹W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

²Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic

³Materials Research Laboratory, Silesian University of Technology, Gliwice 44-100, Poland

* Corresponding authors: oleksii.bezkrovnyi@gmail.com; vorokhtm@mbox.troja.mff.cuni.cz

Figure S1. The Arrhenius plots for the oxidized (pre-treated in air at 500 °C) and reduced (pre-treated in air at 500 °C, then in H_2 at 400 °C) Ru/CeO₂ samples.

Figure S2. High-resolution HAADF-STEM images of the oxidized Ru/CeO₂ catalyst (calcined in air at 500 °C) before (a) and after (b) the C_3H_8 oxidation test and the reduced in H₂ at 400 °C Ru/CeO₂ catalyst after the C_3H_8 oxidation test (c).

Figure S3. High-resolution HAADF-STEM images of the reduced in H_2 at 400 °C Ru/CeO₂ catalyst.

Figure S4. NAP-XPS Ru 3p spectra collected while exposing the oxidized Ru/CeO₂ catalyst to 0.5 mbar oxygen at 500 °C and hydrogen at 400 °C.

Figure S5. NAP-XPS Ru 3d (a) and Ce 3d (b) regions collected while subsequently exposing the oxidized Ru/CeO₂ catalyst to 0.5 mbar argon at 25 °C, 0.5 mbar oxygen at 500 °C, 0.5 mbar oxygen at 25 °C (after cooling in oxygen), and 0.5 mbar argon at 25 °C after exposing to air for 24 hours. The air-exposed catalyst was mechanically stirred and pressed into the In foil before the measurement.

Figure S6. NAP-XPS Ce 3d spectra collected: (a) while pre-treating the oxidized Ru/CeO₂ catalyst in different environments (neutral (Ar), oxidative (O₂), and reducing (H₂) gas atmospheres) at different temperatures; (b) during propane oxidation ($C_3H_8+O_2$ (1:10)) on the reduced Ru/CeO₂ catalyst at 300 and 400 °C.

Figure S7. (a) EDS analysis of the oxidized Ru/CeO₂ sample before and after the reducingoxidizing cycle in the NAP cell (the reduction in 0.5 mbar H₂ at 400 °C followed by the subsequent re-oxidation in 0.5 mbar O₂ at 500 °C); (b) EDX analysis of the oxidized Ru/CeO₂ sample before and after the propane oxidation test in catalytic reactor, and EDX analysis of the reduced Ru/CeO₂ sample after propane oxidation in the reactor (the visible signal of In originates from the In foil used as a support for the catalyst).

Figure S8. NAP-XPS Ce 3d spectra collected from the as-deposited planar Ru/CeO₂ catalyst in UHV and during exposure to 0.6 mbar $C_3H_8+O_2$ (1:10) at 200-400 °C, 0.5 mbar H₂, and again 0.6 mbar $C_3H_8+O_2$ (1:10) at 400 °C.

Figure S9. STEM-EDX analysis of the planar Ru/CeO₂ sample before (a-c) and after (d-f) the the NAP-XPS experiment. Intensities are normalized to maximum [0, 1].

Figure S10. EDS analysis of the as-deposted planar Ru/CeO₂ sample before and after the reducing-oxidizing cycle in NAP cell (the reduction in 0.5 mbar H₂ at 400 °C followed by the subsequent re-oxidation in 0.5 mbar O₂ at 500 °C).

Figure S11. NAP-XPS Ru 3d (a) and Ce 3d (b) spectra collected from the oxidized Ru/CeO₂ catalyst before and after the propane oxidation test in catalytic reactor. The catalytic test included H_2 pre-treatment at 400 °C.

Pre-treatment	T ₅₀ [°C]		r_{275} [µmol·g ⁻¹ ·s ⁻¹]		$TOF_{275} \cdot 10^3 [s^{-1}]$		E _a [kJ/mol]	
	Run1	Run2	Run1	Run2	Run1	Run2	Run1	Run2
Air 500 °C	312	320	12.0	9.7	1.21	0.98	44	67
Air 500 °C + H ₂ 400° C	302	400	14.3	3.7	1.45	0.37	60	40

Table S1. Results of the analysis of the C₃H₈ conversion curves for Ru/CeO₂ catalyst, where r_{275} presents a specific reaction rate at 275 °C [µmol·g⁻¹·s⁻¹], TOF₂₇₅ - turnover frequency (TOF) at 275 °C [s⁻¹], E_a – activation energy, [kJ/mol]. The r_{275} , TOF₂₇₅, E_a values were calculated by the procedure described in detail by Ledwa et al. in [2].

Catalyst	The feed gas	Reaction	Ea	$rC_3H_8 \times 10^6$	TOF	Ref.
		temperautre	[kJ/mol]	$[mol \cdot g^{-1} \cdot s^{-1}]$	$\times 10^{3} [s^{-1}]$	
		[°C]				
(1.5 wt.%)Ru/CeO ₂	$0.2 \text{ vol.}\% \text{ C}_3\text{H}_8,$	200	58.6	35.2	6.14	[1]
	2 vol.% O ₂ ,					
	97.8 vol.% Ar,					
	30 000 mL·h⁻					
	$^{1} \cdot g_{cat}^{-1}$					
$Ru_{0.05}Ce_{0.95}O_{2-y}/Al_2O_3$	mixture 250	275	40	0.68	3.33	[2]
	vppm of					
	propane in the					
	air, 120000 mL					
	h ⁻¹ gcat ⁻¹					
(2 wt.%)	0.2% C ₃ H ₈ +	155	28.6	21.26	344	[3]
Ru/CeO ₂ (rods)	$2\% O_2/Ar$,					
(2 wt.%)	120000 mL h-1	155	58.5	7.81	781	
Ru/CeO ₂ (cubes)	gcat -1					
(2 wt.%)		155	74.7	1.25	261	
Ru/CeO ₂ (octahedra)						
Oxidized	mixture 250	275				This
$(1 \text{ wt}\%\text{Ru})\text{Ru}/\text{CeO}_2$	vppm of					work
Run1	propane in the		44	12.0	1.21	
Run2	air, 120000 mL		67	9.7	0.98	
Reduced	h-l gcat -l					
$(1 \text{ wt}\%\text{Ru})\text{Ru}/\text{CeO}_2$						
Run1			60	14.3	1.45	
Run2			40	3.7	0.37	

Table S2. Ru/CeO₂ activity in C_3H_8 oxidation. Literature data.

References

[1] Hu, Z., Wang, Z., Guo, Y., Wang, L., Guo, Y., Zhang, J., & Zhan, W. (2018). Total Oxidation of Propane over a Ru/CeO2 Catalyst at Low Temperature. *Environmental Science and Technology*, *52*(16), 9531–9541. https://doi.org/10.1021/acs.est.8b03448

[2] Ledwa, K. A., Kępiński, L., Ptak, M., & Szukiewicz, R. (2020). Ru0.05Ce0.95O2-y deposited on functionalized alumina as a smart catalyst for propane oxidation. *Applied Catalysis B: Environmental*, 274. https://doi.org/10.1016/j.apcatb.2020.119090.

[3] Wang, Z., Huang, Z., Brosnahan, J. T., Zhang, S., Guo, Y., Guo, Y., Wang, L., Wang, Y., & Zhan, W. (2019). Ru/CeO2 Catalyst with Optimized CeO2 Support Morphology and Surface Facets for Propane Combustion. *Environmental Science and Technology*, *53*(9), 5349–5358. https://doi.org/10.1021/acs.est.9b01929.