Supporting Information

Improving the thermoelectric performance of double half-Heusler compounds ZrNi(In,Sb)

Shiyang He^{a,b,†}, Amin Bahrami^{a*,†}, Pingjun Ying^a, Lars Giebeler^a, Xiang Zhang^c, Kornelius Nielsch

^{a,b}, Ran He^{a*}

^a Leibniz Institute of Solid State and Materials Science, 01069 Dresden, Germany

^b Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany

^c National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, 450001 Zhengzhou, China

* Correspondence to: e-mails: a.bahrami@ifw-dresden.de (A. Bahrami); r.he@ifw-dresden.de (R. He)
[‡] These authors contributed equally to this work.

Fig. S1 XRD patterns of ZrNiIn_xSb_{1-x}-based materials.

Fig. S2 The SEM images for (a) y=0.05, (b) y=0.1, (c) y=0.15, (d) y=0.2, (e) y=0.25, and (f) - (g) y=0.3 in $Zr_{0.9}Ni_{0.9-y}Co_yIn_{0.4}Sb_{0.6}$ and (h) Co-content dependence of grain size.

Fig. S3 Temperature dependence of electrical properties for $Zr_{0.9-z}Hf_zNi_{0.625}Co_{0.25}In_{0.4}Sb_{0.6}$ (z = 0.05 - 0.2)

Fig. S4 Temperature dependence of κ_e for ZrNiIn_xSb_{1-x}, Zr_{0.9}Ni_{0.9-y}Co_yIn_{0.4}Sb_{0.6} and Zr_{0.9-} _zHf_zNi_{0.625}Co_{0.25}In_{0.4}Sb_{0.6} samples.

Fig. S5 Comparison of temperature dependence of zT for reported double HH compounds¹⁻⁴.

ZrN	ZrNiSb _{0.5} In _{0.5}			Zr _{0.9} Ni _{0.9} Sb _{0.4} In _{0.6}	$Zr_{0.9}Ni_{0.65}Co_{0.25}Sb_{0.4}In_{0.6}$		Zr _{0.7} Hf _{0.2} Ni _{0.65} Co _{0.25} Sb _{0.4} In _{0.6}				
Phase	ZrNiInSb	Zr ₂ Ni2In	ZrNiInSb	Zr ₂ Ni ₂ In	Ni ₂ ZrIn	ZrNiInSb	ZrNiInSb	In ₃ Ni ₂ *	ZrNiInSb	Ni ₂ ZrI n	HfO ₂
Space group	F-43m	P4 ₂ /mnm	F-43m	P4/mb m	Fm-3m	F-43m	F-43m	<i>P</i> -3m1	F-43m	Fm-3m	P1 2 ₁ /c 1
<i>a</i> / Å		7.1095(4)		7.1579 (4)	6.2864(8)			4.3973(4)			5.100(
<i>b</i> / Å	6.10130(3		6.10055(4)			6.09816(1)	6.09368(4)		6.08992(5)	6.2752 (9)	5.197(
<i>c</i> / Å	-	6.7742(5)	-	3.3485 (2)		_		5.2982(10)	_		5.299(
β/°											99.02(6)
~v / °								120			•)
V / Å ³	227.126(3	342.40(7)	227.042(5)	171.56 (3)	248.43(1 0)	226.755(1)	226.276(4)	88.72(5)	225.858(6)	247.1(1)	138.7(3)
phase content / wt%	98	2	93	6	1	~98#	99	1	96	3	1
measured reflections	31	296	31	159	34	31	31	120	31	34	408
R _f	1.2	13.3	1.5	13.6	56.7	1.4	1.3	33	1.3	42.7	32
R _I	1.49	11.7	1.6	12.2	46.4	1.6	1.7	31.9	1.6	20.9	41.4

 $Zr_{0.9}Ni_{0.65}Co_{0.25}In_{0.4}Sb_{0.6}\text{, and }Zr_{0.7}Hf_{0.2}Ni_{0.65}Co_{0.25}In_{0.4}Sb_{0.6}$

 $Table S1 \ Results \ of the Rietveld \ analyses \ for \ compounds \ with \ the \ nominal \ compositions \ ZrNiIn_{0.5}Sb_{0.5}, \ ZrNiIn_{0.4}Sb_{0.6}, \ Zr_{0.9}Ni_{0.9}In_{0.4}Sb_{0.6}, \ Sb_{0.5}, \ Sb_{0.$

R _{wp}	11.8		13.9			13.3	12.6		12.1	
R _p	9.4		9.6			9.8	8.7		11.2	
R _e	12.2		14.2			12.6	12.6		11.8	
χ ²	0.94		0.95			1.2	1.0		1.1	
						atomic parameters				
7.1 / 1161	4 <i>a</i> (0. 0.									
	0)									
	1.00 /		0.998(15) /		0 933(6) / -		0.932(6) /		0.471(11) /	
000	1.007-		-			0.955(0)7-	0.952(0)7-		0.361	
Biso / Å ²	0.47(4)		0.78(6)			0.48(5)	0.46(4)		0.68(13)	
$Ni1/C_{0}1/7r^{2}$	4 <i>c</i> (1/4.									
N11 / Co1 / Zr2	1/4. 1/4)									
		1.0	1.004(13)/	004(13)/			0.669(4) /	0.77(13) /		
Occ.	1.00 / - / -		1.004(13)7			0.946(6) / - / -	0.255(4) /		0.7/(13)/	
			- / -				0.016(4)		0.24(13)7-	
Biso / Å ²	0.54(3)		0.80(6)			0.54(4)	0.60(5)		0.62(5)	
La 1/Sh 1	4 <i>b</i> (1/2.									
	1/2. 1/2)									
	0.61 /		0.51/0.46		0.63 / 0.32		0.63/0.31		0.67/0.27	
	0.36		0.317 0.40			0.037 0.32	0.03 / 0.31		0.0770.27	
Biso / Å ²	0.38(3)		0.48(4)			0.54(4)	0.55(3)		0.48(12)	
Reference	5	6–8	5	9	10	5	5	11,12	5	10

values for minor phase estimated, at least one more phase

* angle $\gamma = 120^{\circ}$ for the hexagonal setting of P3m1, not given in the table for clarity

Nominal Composition						
		Zr	Ni	In	Sb	
	Measured	$33.834 \pm$	22.363±	$15.360\pm$	27.524±	
	wt%	0.35	0.25	0.16	0.15	
ZrNiIn _{0.4} Sb _{0.6}	Measured <i>at</i> %	33.361	34.272	12.033	20.333	
	Nominal <i>at%</i>	33.333	33.333	13.333	20.000	
		Zr	Ni	In	Sb	
	Measured	$34.215 \pm$	22.316±	$19.554 \pm$	$23.054 \pm$	
	wt%	0.79	0.38	0.34	0.49	
ZrNiIn _{0.5} Sb _{0.5}	Measured <i>at</i> %	33.641	34.102	15.275	16.982	
	Nominal <i>at%</i>	33.333	33.333	16.67	16.67	
		Zr	Ni	In	Sb	
	Measured	$33.290 \pm$	21.833±	$14.422\pm$	30.219±	
	wt%	0.21	0.20	0.23	0.18	
$Zr_{0.9}Ni_{0.9}In_{0.4}Sb_{0.6}$	Measured <i>at</i> %	32.855	33.490	11.309	22.345	
	Nominal <i>at%</i>	32.143	32.143	14.286	21.429	
		Zr	Ni	In	Sb	Co
	Measured	33.102±	15.825±	$14.231\pm$	$30.439 \pm$	$5.842\pm$
	wt%	0.21	0.27	0.14	0.10	0.04
$Zr_{0.9}Ni_{0.65}Co_{0.25}Sb_{0.6}In_{0.4}$	Measured <i>at</i> %	32.822	24.388	11.211	22.612	8.967
	Nominal <i>at%</i>	32.143	23.214	14.286	21.429	8.929

Table S2 The results of ICP of $ZrNiIn_xSb_{1-x}$ -based double HH.

Reference:

- 1 A. Karati, S. Ghosh, R. C. Mallik, R. Shabadi, B. S. Murty and U. V. Varadaraju, J. Mater. Eng. Perform., 2022, **31**, 305–317.
- 2 R. Hasan, T. Park, S. Kim, H.-S. Kim, S. Jo and K. H. Lee, *Adv. Energy Sustain. Res.*, 2022, 2100206.
- 3 Q. Wang, X. Li, C. Chen, W. Xue, X. Xie, F. Cao, J. Sui, Y. Wang, X. Liu and Q. Zhang, *Phys. status solidi*, 2020, **217**, 2000096.in
- 4 Z. Liu, S. Guo, Y. Wu, J. Mao, Q. Zhu, H. Zhu, Y. Pei, J. Sui, Y. Zhang and Z. Ren, *Adv. Funct. Mater.*, 2019, **29**, 1905044.
- 5 V. V. Romaka, L. Romaka, P. Rogl, Y. Stadnyk, N. Melnychenko, R. Korzh, Z. Duriagina and A. Horyn, *J. Alloys Compd.*, 2014, **585**, 448–454.
- 6 Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen and Z. Ren, J. Am. Chem. Soc., 2012, **134**, 10031–10038.
- 7 R. Pöttgen and R. Dronskowski, J. Solid State Chem., 1997, 128, 289–294.
- 8 M. Lukachuk and R. Pöttgen, Zeitschrift für Krist. Cryst. Mater., 2003, 218, 767–787.
- V. I. Zaremba, L. D. Gulai, Y. M. Kalychak and L. G. Akselrud, *Kristallografiya*, 1995, 40, 369–369.
- 10 J. Soltys and K. Turek, Acta Phys. Pol. A, 1975, 47, 335–337.
- 11 E. Hellner, Int. J. Mater. Res., 1950, 41, 401–406.
- 12 E. Hellner and F. Laves, *Zeitschrift für Naturforsch. A*, 1947, **2**, 177–184.