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Additional computational details

1. The time to break a P-O bond of PO /.

The Vienna Ab Initio Package (VASP)[1,2] was employed to perform all the spin-
polarized density functional theory (DFT) calculations within the generalized gradient
approximation (GGA) using the PBE formulation.[3] The projected augmented wave
(PAW) potentials[4,5] was chosen to describe the ionic cores and take valence electrons
into account using a plane wave basis set with a kinetic energy cutoff of 400 eV. The
correction function Grimme is used to correct the van der Waals force (vdW) dispersion
interaction.[6] Partial occupancies of the Kohn-Sham orbitals were allowed using the
Gaussian smearing method and a width of 0.1 eV. The electronic energy was considered
self - consistent when the energy change was smaller than 10° eV. A geometry
optimization was considered convergent when the force imposed on each atom was smaller
than 0.01 eV. A. The atomic vibration frequencies were calculated via the finite
displacement methods.[7] The CINEB methods[8] were used to calculate the energies of

the transition states during P - O bond breaking.

The structure of PO,*> located in the supercell of 30.09 A *18.09 A *18.09 A were
optimized. The k - points were set as 1x2x2 with the M - P sampling methods. All the bond

lengths of P-O were about 1.56 A and all the bond angles of P-O-P were about 109.5°

The time to break a P-O bond is defined as follow:



where Y0 is the vibration frequency of the O atom, Eq, is the energy barrier corresponding

to the P-O bond breaking, kg is the Boltzmann constant, and T is the temperature.

The O atom vibration frequencies of the Longitudinal wave and two transverse waves
are 2.30E13Hz, 6.74E12Hz and 6.58E12Hz, respectively. The vibration direction of the
Longitudinal wave is along the P-O bond, which is responsible for the P-O bond breaking.
Therefore, the vibration frequencies of the Longitudinal wave 2.30E13Hz was used to

calculate the time to break a P-O bond of PO,*-.

2. Doping sites of P atoms.

Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian
smearing method and a width of 0.05 eV. The electronic energy was considered self-
consistent when the energy change was smaller than 107> eV. A geometry optimization
was considered convergent when the force change was smaller than 0.02 eV / A. Grimme’s

DFT-D3 methodology was used to describe the dispersion interactions.

The equilibrium lattice constants of hexagonal LiNiO, unit cell (model 0) were
optimized, when using a 15%15%x3 Monkhorst-Pack k-point grid for Brillouin zone
sampling, to be a=b=2.831 A, c=13.824 A. Then it was used to construct a LiNiO, supercell
with 3x3x1 periodicity. It comprises of 27 Li, 27 Ni and 54 O atoms. During structural

optimizations, the I' point in the Brillouin zone was used for k-point sampling, and all



atoms were allowed to fully relax.

3. The formation energy of oxygen vacancy.

The formation energy of oxygen vacancy was calculated by the following formula:

AE¢m(Vo) = E(defect) - E (perfect) + 1/2Egas(O,)

Where the AE¢,,(Vo), E(defect), E (perfect), Egas(O,) represents formation energy of
oxygen vacancy, the total energy of bulk with and without oxygen vacancy, and the energy

of O, molecule in the gas phase, respectively.
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Figure S1. XRD patterns of Blank Ni83, 0.5P-Ni83, 1.0P-Ni83 and 1.5P-Ni83 cathodes.

Figure S2. The SEM images of a, b) Blank Ni83, c, d) 0.5P-Ni83, e, f) 1.0P-Ni83 and g,

h) 1.5P-Ni83.
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Figure S3 The structures of PO4*".
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Figure S4 a) The energy barrier corresponding to the P-O bond breaking of PO4*-. b) The

time to break a P-O bond of PO4*- vs. the temperature.
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Figure S5 a) model 1: P in Li layer. b) model 2: P in Ni layer.

Table S1 Calculation results of different model energy.

gas molecules

model 0: pristine

model 1: P in Li layer

molecule  Ey (eV) model

Ox(g)  -9.852 *

[with 1 Oyec]

Etot (eV) Ef, Ovac (CV) model Elot (GV) Ef, Ovac (CV)
-628.508 * -635.100
-621.796 1.79 [with 1 O]  -627.404 2.77




Figure S6. EDS mapping of Ni, Co, Mn, O and P of 1.0P-Ni83.

Table S2. Element composition of the bulk particles for Blank Ni83 and 1.0P-Ni83 by

ICP-AES.
P
Sample Li (mol%) Ni(mol%) Co (mol%) Mn (mol%)
(mol%)
Blank Ni83  102.021 83.004 12.314 4.681 0
1.0P-Ni&3 102.700 83.019 12.337 4.641 0.813
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Figure S7. a, b) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between
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Figure S8. a) Cycle performance between 2.7-4.5 V at 60 °C of Blank Ni83 and 1.0P-Ni83.

b, ¢) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between 2.7-4.5 V at

60 °C
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Figure S9. a, b) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between

2.7-4.3 V at 80 °C.

Table S3. Electrochemical performance comparison for Blank Ni83 and 1.0P-Ni8&3.

2.7-45V,25°C

2.7-43V, 60 °C

2.7-4.5V,60°C

2.7-43V,80°C

Capacity Capacity Capacity Capacity
Sample at 1C 200Cs at 1C 500Cs at 1C 200Cs at 1C 200Cs
(mAh g retention (mAhg  retention (mAhg  retention (mAhg  retention
) ), ), ),
Blank
202 52.4% 179 21.4% 182 55.3% 180 11.4%
Ni&3
1.0P-
197 88.3% 180 80.2% 208 80.1% 178 84.7%
Ni&3




Figure S10. SEM images after 200 cycles between 2.7-4.3 V at 60 °C of a, b) Blank Ni83

electrode ¢, d) 1.0P-Ni83 electrode.

Table S4. The fitted impedance parameters of equivalent circuits.

R¢/ohm R./ohm
Cycle
Blank Ni83 1.0P-Ni83 Blank Ni83 1.0P-Ni83
Fresh -- -- 25.64 24.83
50th 65.99 55.72 227.20 86.04
100th 154.90 63.39 648.10 140.40
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Figure S11. XRD patterns after 200 cycles between 2.7-4.3 V at 60 °C of Blank Ni83

electrode and 1.0P-Ni83 electrode.

(a) 240 (b) (c)
- e A 100 E 45 45

@210 E

< 180 o A

< . 2 80 g

E 450 g J40 i J a0 — st
2 60 £ — 50th < ——10th
5 120 5 o oihl @ ——50th
2 90 40 3 §'3 5 1s0m| P35 :gg':
S E = ——200th| = 4
g Blank Nis3 (60.2%) 202 3 g ——— 200th
= - lank Ni .. = \

g 30 = 1.0P-Nig3 (83.4%) 2.7V-4.5V, 25T 3 Eo 2 1RE ‘5

Q. \ \ |

0 0 .
®; S 50 100 150 200 0 50 100 150 200 250 50 100 150 200, 250
Cycle number Specific capacity (mAh g™) Specific capacity (mAh g™)

Figure S12. a) Cycling performance of full cell for Blank Ni83 and1.0P-Ni83 at 1 C
between 2.7-4.5 V at 25 °C. b, ¢) Typical charge-discharge profiles of full cell for Blank

Ni83 and 1.0P-Ni83 between 2.7-4.5 V at 25 °C.
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