Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Phosphorus doping stabilized LiNi_{0.83}Co_{0.12}Mn_{0.05}O₂ with enhanced

elevated temperature electrochemical performance for Li-ion battery

Xin Wang, Xiaoyu Zhang, Fangyuan Cheng, Peng Wei, Qi Li, Jia Xu, Qing Li, Yue Xu,

Shixiong Sun, Chun Fang*, Jiantao Han*

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Corresponding author

* E-mail addresses: fangchun@hust.edu.cn (C. Fang)

jthan@hust.edu.cn (J.T. Han).

Author Contributions

X.W did the main work and others provided important help.

Additional computational details

1. The time to break a P-O bond of PO_4^{3-} .

The Vienna Ab Initio Package (VASP)[1,2] was employed to perform all the spinpolarized density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the PBE formulation.[3] The projected augmented wave (PAW) potentials[4,5] was chosen to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 400 eV. The correction function Grimme is used to correct the van der Waals force (vdW) dispersion interaction.[6] Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.1 eV. The electronic energy was considered self - consistent when the energy change was smaller than 10^{-6} eV. A geometry optimization was considered convergent when the force imposed on each atom was smaller than 0.01 eV, Å₀ The atomic vibration frequencies were calculated via the finite displacement methods.[7] The CINEB methods[8] were used to calculate the energies of the transition states during P - O bond breaking.

The structure of PO_4^{3-} located in the supercell of 30.09 Å *18.09 Å *18.09 Å were optimized. The k - points were set as $1 \times 2 \times 2$ with the M - P sampling methods. All the bond lengths of P-O were about 1.56 Å and all the bond angles of P-O-P were about 109.5°

The time to break a P-O bond is defined as follow:

$$t = \frac{1}{v_0} exp^{(0)} \left(\frac{E_a}{k_B T}\right)$$

where v_0 is the vibration frequency of the O atom, E_a is the energy barrier corresponding to the P-O bond breaking, k_B is the Boltzmann constant, and T is the temperature.

The O atom vibration frequencies of the Longitudinal wave and two transverse waves are 2.30E13Hz, 6.74E12Hz and 6.58E12Hz, respectively. The vibration direction of the Longitudinal wave is along the P-O bond, which is responsible for the P-O bond breaking. Therefore, the vibration frequencies of the Longitudinal wave 2.30E13Hz was used to calculate the time to break a P-O bond of PO_4^{3-} .

2. Doping sites of P atoms.

Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10^{-5} eV. A geometry optimization was considered convergent when the force change was smaller than 0.02 eV /Å. Grimme's DFT-D3 methodology was used to describe the dispersion interactions.

The equilibrium lattice constants of hexagonal LiNiO₂ unit cell (model 0) were optimized, when using a $15 \times 15 \times 3$ Monkhorst-Pack k-point grid for Brillouin zone sampling, to be a=b=2.831 Å, c=13.824 Å. Then it was used to construct a LiNiO₂ supercell with $3 \times 3 \times 1$ periodicity. It comprises of 27 Li, 27 Ni and 54 O atoms. During structural optimizations, the Γ point in the Brillouin zone was used for k-point sampling, and all

atoms were allowed to fully relax.

3. The formation energy of oxygen vacancy.

The formation energy of oxygen vacancy was calculated by the following formula:

 $\Delta E_{\text{form}}(\text{Vo}) = E(\text{defect}) - E(\text{perfect}) + 1/2Egas(O_2)$

Where the $\Delta E_{form}(Vo)$, E(defect), E (perfect), Egas(O₂) represents formation energy of oxygen vacancy, the total energy of bulk with and without oxygen vacancy, and the energy of O₂ molecule in the gas phase, respectively.

Figure S1. XRD patterns of Blank Ni83, 0.5P-Ni83, 1.0P-Ni83 and 1.5P-Ni83 cathodes.

Figure S2. The SEM images of a, b) Blank Ni83, c, d) 0.5P-Ni83, e, f) 1.0P-Ni83 and g,

h) 1.5P-Ni83.

Figure S3 The structures of PO_4^{3-} .

Figure S4 a) The energy barrier corresponding to the P-O bond breaking of PO_4^{3-} . b) The time to break a P-O bond of PO_4^{3-} vs. the temperature.

Figure S5 a) model 1: P in Li layer. b) model 2: P in Ni layer.

 Table S1 Calculation results of different model energy.

gas molecules		model 0: pristine			model 1: P in Li layer		
molecule	E _{tot} (eV)	model	$E_{tot}\left(eV ight)$	$E_{f,Ovac}\left(eV\right)$	model	E _{tot} (eV)	$E_{f, Ovac} \left(eV \right)$
$O_2(g)$	-9.852	*	-628.508		*	-635.100	
		[with 1 O _{vac}]	-621.796	1.79	[with 1 O _{vac}]	-627.404	2.77

Figure S6. EDS mapping of Ni, Co, Mn, O and P of 1.0P-Ni83.

Table S2. Element composition of the bulk particles for Blank Ni83 and 1.0P-Ni83 byICP-AES.

G 1	Li (mol%)	Ni (mol%)	Co (mol%)	Mn (mol%)	Р
Sample					(mol%)
Blank Ni83	102.021	83.004	12.314	4.681	0
1.0P-Ni83	102.700	83.019	12.337	4.641	0.813
Voltage (V vs Lr*/Li) (b)	.5 .0 .0 .5 .0 .0 .5 .0 .0 .5 .7 .7 .4 .5 .2 .7 .4 .5 .2 .7 .4 .5 .2 .7 .4 .5 .2 .7 .2 .5 .2 .7 .2 .5 .2 .7 .2 .5 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .2 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	10Th 50Th 100Th 200Th 200Th 150 200 250 city (mAh g ⁻¹)	(b) (i), 4.5 (b) (i), 4.5 (c), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	10Th 50Th 100Th 150Th 200Th 200Th 200Th 200Th 200Th	

Figure S7. a, b) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between

2.7-4.5 V at 25 °C.

Figure S8. a) Cycle performance between 2.7-4.5 V at 60 °C of Blank Ni83 and 1.0P-Ni83.

b, c) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between 2.7-4.5 V at 60 °C.

Figure S9. a, b) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between

2.7-4.3 V at 80 °C.

 Table S3. Electrochemical performance comparison for Blank Ni83 and 1.0P-Ni83.

	2.7-4.5 V, 25 °C		2.7-4.3 V, 60 °C		2.7-4.5 V, 60 °C		2.7-4.3 V, 80 °C	
	Capacity		Capacity		Capacity		Capacity	
Sample	at 1C	200Cs	at 1C	500Cs	at 1C	200Cs	at 1C	200Cs
	(mAh g-	retention						
	1)		1)		1)		1)	
Blank	202	52 40/	170	21 40/	192	55 20/	190	11 40/
Ni83	202	32.4% 179	1/9	21.4%	182	33.370	160	11.470
1.0P-	197	88.3% 18	190	80.20/	208	80.1%	178	84.7%
Ni83			180	00.270				

Figure S10. SEM images after 200 cycles between 2.7-4.3 V at 60 °C of a, b) Blank Ni83 electrode c, d) 1.0P-Ni83 electrode.

Cycle	R _f /o	hm	R _{ct} /ohm		
	Blank Ni83	1.0P-Ni83	Blank Ni83	1.0P-Ni83	
Fresh			25.64	24.83	
50th	65.99	55.72	227.20	86.04	
100th	154.90	63.39	648.10	140.40	

Table S4. The fitted impedance parameters of equivalent circuits.

Figure S11. XRD patterns after 200 cycles between 2.7-4.3 V at 60 °C of Blank Ni83

electrode and 1.0P-Ni83 electrode.

Figure S12. a) Cycling performance of full cell for Blank Ni83 and 1.0P-Ni83 at 1 C between 2.7-4.5 V at 25 °C. b, c) Typical charge-discharge profiles of full cell for Blank Ni83 and 1.0P-Ni83 between 2.7-4.5 V at 25 °C.

References

- [1] Kresse, G.; Furthmüller, Comput. Mater. Sci. 1996, 6, 15-50, doi:10.1016/0927-0256(96)00008-0.
- [2] Kresse, G.; Furthmüller, Phys. Rev. B 1996, 54, 11169–11186, doi:10.1103/PhysRevB.54.11169.
- [3] Perdew, J. P.; Burke, K.; Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868,

doi:10.1103/PhysRevLett.77.3865.

- [4] Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775, doi:10.1103/PhysRevB.59.1758.
- [5] Blöchl, P. E. Phys. Rev. B 1994, 50, 17953-17979, doi:10.1103/PhysRevB.50.17953.
- [6] E.R. McNellis, J. Meyer, K. Reuter, Phys. Rev. B 80 (2009), doi:10.1103/PhysRevB.80.205414.
- [7] Parlinski K, Li Z Q, Kawazoe Y. Physical Review Letters, 1997, 78(21): 4063, doi:10.1103/PhysRevLett.78.4063.
- [8] Henkelman G, Uberuaga B P, Jónsson H. The Journal of chemical physics, 2000, 113(22): 9901-9904, doi:10.1063/1.1329672.