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Additional computational details

1. The time to break a P-O bond of PO4
3-.

The Vienna Ab Initio Package (VASP)[1,2] was employed to perform all the spin-

polarized density functional theory (DFT) calculations within the generalized gradient 

approximation (GGA) using the PBE formulation.[3] The projected augmented wave 

(PAW) potentials[4,5] was chosen to describe the ionic cores and take valence electrons 

into account using a plane wave basis set with a kinetic energy cutoff of 400 eV. The 

correction function Grimme is used to correct the van der Waals force (vdW) dispersion 

interaction.[6] Partial occupancies of the Kohn-Sham orbitals were allowed using the 

Gaussian smearing method and a width of 0.1 eV. The electronic energy was considered 

self - consistent when the energy change was smaller than 10−6 eV. A geometry 

optimization was considered convergent when the force imposed on each atom was smaller 

than 0.01 eV、Å。The atomic vibration frequencies were calculated via the finite 

displacement methods.[7] The CINEB methods[8] were used to calculate the energies of 

the transition states during P - O bond breaking.

The structure of PO4
3- located in the supercell of 30.09 Å *18.09 Å *18.09 Å were 

optimized. The k - points were set as 1×2×2 with the M - P sampling methods. All the bond 

lengths of P-O were about 1.56 Å and all the bond angles of P-O-P were about 109.5° 

The time to break a P-O bond is defined as follow:
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where  is the vibration frequency of the O atom,  is the energy barrier corresponding 𝑣0 𝐸𝑎

to the P-O bond breaking,  is the Boltzmann constant, and  is the temperature.𝑘𝐵 𝑇

The O atom vibration frequencies of the Longitudinal wave and two transverse waves 

are 2.30E13Hz, 6.74E12Hz and 6.58E12Hz, respectively. The vibration direction of the 

Longitudinal wave is along the P-O bond, which is responsible for the P-O bond breaking. 

Therefore, the vibration frequencies of the Longitudinal wave 2.30E13Hz was used to 

calculate the time to break a P-O bond of PO4
3-.

2. Doping sites of P atoms.

Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian 

smearing method and a width of 0.05 eV. The electronic energy was considered self-

consistent when the energy change was smaller than 10−5 eV. A geometry optimization 

was considered convergent when the force change was smaller than 0.02 eV / Å. Grimme’s 

DFT-D3 methodology was used to describe the dispersion interactions.

The equilibrium lattice constants of hexagonal LiNiO2 unit cell (model 0) were 

optimized, when using a 15×15×3 Monkhorst-Pack k-point grid for Brillouin zone 

sampling, to be a=b=2.831 Å, c=13.824 Å. Then it was used to construct a LiNiO2 supercell 

with 3×3×1 periodicity. It comprises of 27 Li, 27 Ni and 54 O atoms. During structural 

optimizations, the Γ point in the Brillouin zone was used for k-point sampling, and all 
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atoms were allowed to fully relax.

3. The formation energy of oxygen vacancy.

The formation energy of oxygen vacancy was calculated by the following formula:

ΔEform(Vo) = E(defect) - E (perfect) + 1/2Egas(O2) 

Where the ΔEform(Vo), E(defect), E (perfect), Egas(O2) represents formation energy of 

oxygen vacancy, the total energy of bulk with and without oxygen vacancy, and the energy 

of O2 molecule in the gas phase, respectively.
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Figure S1. XRD patterns of Blank Ni83, 0.5P-Ni83, 1.0P-Ni83 and 1.5P-Ni83 cathodes.

Figure S2. The SEM images of a, b) Blank Ni83, c, d) 0.5P-Ni83, e, f) 1.0P-Ni83 and g, 

h) 1.5P-Ni83.
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Figure S3 The structures of PO4
3-. 

Figure S4 a) The energy barrier corresponding to the P-O bond breaking of PO4
3-. b) The 

time to break a P-O bond of PO4
3- vs. the temperature.

Figure S5 a) model 1: P in Li layer. b) model 2: P in Ni layer.

Table S1 Calculation results of different model energy.

gas molecules model 0: pristine model 1: P in Li layer

molecule Etot (eV) model Etot (eV) Ef, Ovac (eV) model Etot (eV) Ef, Ovac (eV)

O2(g) -9.852 * -628.508 * -635.100

[with 1 Ovac] -621.796 1.79 [with 1 Ovac] -627.404 2.77
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Figure S6. EDS mapping of Ni, Co, Mn, O and P of 1.0P-Ni83.

Table S2. Element composition of the bulk particles for Blank Ni83 and 1.0P-Ni83 by 

ICP-AES.

Sample Li (mol%) Ni (mol%) Co (mol%) Mn (mol%)
P 

(mol%)

Blank Ni83 102.021 83.004 12.314 4.681 0

1.0P-Ni83 102.700 83.019 12.337 4.641 0.813

Figure S7. a, b) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between 

2.7-4.5 V at 25 °C.
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Figure S8. a) Cycle performance between 2.7-4.5 V at 60 °C of Blank Ni83 and 1.0P-Ni83. 

b, c) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between 2.7-4.5 V at 

60 °C.

Figure S9. a, b) Typical charge-discharge profiles of Blank Ni83 and 1.0P-Ni83 between 

2.7-4.3 V at 80 °C.

Table S3. Electrochemical performance comparison for Blank Ni83 and 1.0P-Ni83.

2.7-4.5 V, 25 °C 2.7-4.3 V, 60 °C 2.7-4.5 V, 60 °C 2.7-4.3 V, 80 °C

Sample

Capacity 

at 1C

(mAh g-

1)

200Cs 

retention 

Capacity 

at 1C

(mAh g-

1)

500Cs 

retention

Capacity 

at 1C

(mAh g-

1)

200Cs 

retention

Capacity 

at 1C

(mAh g-

1)

200Cs 

retention

Blank 

Ni83
202 52.4% 179 21.4% 182 55.3% 180 11.4%

1.0P-

Ni83
197 88.3% 180 80.2% 208 80.1% 178 84.7%
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Figure S10. SEM images after 200 cycles between 2.7-4.3 V at 60 °C of a, b) Blank Ni83 

electrode c, d) 1.0P-Ni83 electrode. 

Table S4. The fitted impedance parameters of equivalent circuits. 

Rf /ohm Rct /ohm
Cycle

Blank Ni83 1.0P-Ni83 Blank Ni83 1.0P-Ni83

Fresh -- -- 25.64 24.83

50th 65.99 55.72 227.20 86.04

100th 154.90 63.39 648.10 140.40
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Figure S11. XRD patterns after 200 cycles between 2.7-4.3 V at 60 °C of Blank Ni83 

electrode and 1.0P-Ni83 electrode.

Figure S12. a) Cycling performance of full cell for Blank Ni83 and1.0P-Ni83 at 1 C 

between 2.7-4.5 V at 25 °C. b, c) Typical charge-discharge profiles of full cell for Blank 

Ni83 and 1.0P-Ni83 between 2.7-4.5 V at 25 °C. 
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