Supporting Information

FeP/Ni₂P Nanosheet Arrays as High-Efficiency Hydrogen Evolution Electrocatalysts

Meilian Gao¹, PingPing Gao¹,², Ting Lei¹*, Chun Ouyang³, Xiaobo Wu¹, Anru Wu², Yong Du¹

1. Powder Metallurgy Research Institute, Central South University, Changsha, 410083, PR China;
2. Hunan Engineering Research Center of New Energy Vehicle Lightweight, Hunan Institute of Engineering, Xiangtan, 411104, PR China
3. School of Material Science and Engineering, Jiangsu University of Science and Technology, Jiangsu 21200, PR China

*Email: tlei@mail.csu.edu.cn (Ting Lei)
Fig. S1 EDS elemental mapping images of FeP/Ni$_2$P/CP. (a) overlay, (b) Fe element, (c) Ni element, (d) P element.

Fig. S2 SEM images of (a) FeP/CP-NA, (b) FeP/CP, (c) Ni$_2$P/CP, (d) FeP/Ni$_2$P/CP.
Fig. S3 XPS spectra of Ni(OH)$_2$/CP and FeOOH/Ni(OH)$_2$/CP precursor.

Fig. S4 (a) LSV curves of FeP/Ni$_2$P/CP, FeP/CP, Ni$_2$P/CP, FeP/CP-NA and FeP/Ni$_2$P/CP-NA. (b) Corresponding η_{10} and η_{100}. (c) Plots of specific current densities (I_s) of FeP/Ni$_2$P/CP, FeP/CP and Ni$_2$P/CP. The electrolyte is 0.5 M H$_2$SO$_4$.

Fig. S5 (a) LSV curves of FeP/Ni$_2$P/CP, FeP/CP, Ni$_2$P/CP, FeP/CP-NA and FeP/Ni$_2$P/CP-NA. (b) Corresponding η_{10} and η_{100}. (c) Plots of specific current densities (I_s) of FeP/Ni$_2$P/CP, FeP/CP and Ni$_2$P/CP. The electrolyte is 1.0 M KOH.
Fig. S6 simulated DOS of the Fe-3\(d\) orbital, Ni-3\(d\) orbital and P-3\(p\) orbital in FeP/Ni\(_2\)P.

Fig. S7 Optimized structure of H\(_{ad}\) on (a) FeP(211) and (b) Ni\(_2\)P(111).