Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

FeP/Ni₂P Nanosheet Arrays as High-Efficiency Hydrogen

Evolution Electrocatalysts

Meilian Gao¹, PingPing Gao^{1,2*}, Ting Lei^{1*}, Chun Ouyang³, Xiaobo Wu¹, Anru Wu²,

Yong Du¹

 Powder Metallurgy Research Institute, Central South University, Changsha, 410083, PR China;

2. Hunan Engineering Research Center of New Energy Vehicle Lightweight, Hunan Institute of Engineering, Xiangtan, 411104, PR China

3. School of Material Science and Engineering, Jiangsu University of Science and Technology, Jiangsu 21200, PR China

*Email: tlei@mail.csu.edu.cn (Ting Lei)

Fig.S1 EDS elemental mapping images of FeP/Ni $_2$ P/CP. (a) overlay, (b) Fe element, (c) Ni element, (d) P element.

Fig.S2 SEM images of (a) FeP/CP-NA, (b) FeP/CP, (c) Ni₂P/CP, (d) FeP/Ni₂P/CP.

Fig.S3 XPS spectra of Ni(OH)₂/CP and FeOOH/Ni(OH)₂/CP precursor.

Fig.S4 (a) LSV curves of FeP/Ni₂P/CP, FeP/CP, Ni₂P/CP, FeP/CP-NA and FeP/Ni₂P/CP-NA. (b) Corresponding η_{-10} and η_{-100} . (c) Plots of specific current densities (I_s) of FeP/Ni₂P/CP, FeP/CP and Ni₂P/CP. The electrolyte is 0.5 M H₂SO₄.

Fig.S5 (a) LSV curves of FeP/Ni₂P/CP, FeP/CP, Ni₂P/CP, FeP/CP-NA and FeP/Ni₂P/CP-NA. (b) Corresponding η_{-10} and η_{-100} . (c) Plots of specific current densities (I_s) of FeP/Ni₂P/CP, FeP/CP and Ni₂P/CP. The electrolyte is 1.0 M KOH.

Fig.S6 simulated DOS of the Fe-3d orbital, Ni-3d orbital and P-3p orbital in FeP/Ni₂P.

Fig.S7 Optimized structure of H_{ad} on (a) FeP(211) and (b) $Ni_2P(111).$