Electronic Supplementary Information

Redox-Driven Strong Interfacial Interactions between MnO₂ and

Covalent Organic Nanosheets for Efficient Oxygen Reduction Electrocatalysis

Min-Sung Kim,^{\ddagger,a} Tae-Ha Gu,^{\ddagger,b} Soohyeon Park,^{\ddagger,a} Taehoon Kim,^b Yun Kyung Jo,^c Young Kyu Jeong, ^{*,d} Jin Kuen Park^{*,a} and Seong-Ju Hwang^{*,b}

M.-S. Kim, S. Park, Prof. J. K. Park ^a Department of Chemistry, Hankuk University of Foreign Studies, Yongin, 449-791, Gyeonggi-do, Republic of Korea E-mail: jinkpark@hufs.ac.kr

Dr. T. H. Gu, T. Kim, Prof. S.-J. Hwang ^b Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea E-mail: hwangsju@yonsei.ac.kr

Dr. Y. K. Jo ^c Department of Chemistry and Nanosciences, Ewha Womans University, Seoul 03760, Republic of Korea

Dr. Y. K. Jeong (Ph.D.) ^d Korea Institute of Industrial Technology, 137-41 Gwahakdanji-ro, Gangneung-si, Gangwon 25440, Republic of Korea E-mail: immrc80@gmail.com

Figure S1. XPS full profiles of CON-32 and carbon spectrum of the pristine CON-32 and various hybrid materials with varying MnO_2 wt% when they were synthesized, then after purified with Soxhlet extraction.

Figure S2. The magnified scanning electron microscopy (SEM) images of hybrids with varying MnO_2 contents together with their energy dispersive x-ray spectroscopy (EDS)–elemental mapping at the same spots of SEM images with respect to S, N, O, C and Mn.

Figure S3. The transmission electron microscopy (TEM) images of (a) pristine CON-32 and (b) pristine exfoliated layered MnO_2 .

Figure S4. The N₂ adsorption/desorption isotherm profiles of pristine layered MnO₂.

Figure S5. The TEM images of pristine CON-32.

Figure S6. The XPS profiles of hybrids with (a) 6.5 wt% MnO_2 , (b) 30 wt% MnO_2 and (c) 60 wt% MnO_2 , after purified by Soxhlet extraction respectively.

Figure S7. Linear sweep voltammetry (LSV) profiles of precursors MnO₂, CON, as-prepared hybrids with 6.5 wt%, 21 wt%, 30 wt% and 60 wt% MnO₂ with the rotation rates of 400–2025 rpm.

Figure S8. Koutecky–Levich (K–L) profiles of precursors MnO_2 , CON, as-prepared hybrids with 6.5 wt%, 21 wt%, 30 wt% and 60 wt% MnO_2 .

Figure S9. Powder x-ray diffraction (PXRD) patterns of carbonized CON-32 and carbonized hybrids with varying MnO₂ contents at 800 °C under Ar atmosphere; the PXRD peak indexes represent some specific Mn₃O₄ phases.

Figure S10. N₂ adsorption/desorption isotherm profiles of carbonized CON-32 and carbonized hybrids with varying MnO_2 contents at 800 °C under Ar atmosphere.

Figure S11. (a) TEM images of carbonized hybrid with 6.5 wt% MnO₂; together with (b) scanning transmission electron microscopy (STEM) images and (c) EDS–elemental mapping of N at the same spots of TEM and STEM images.

Figure S12. (a) PXRD pattern and (b) FE-SEM image of Mn_3O_4 prepared by the heat-treatment of MnO_2 nanosheet at 800 °C in Ar atmosphere.

Figure S13. LSV profiles of carbonated CON, Mn_3O_4 , carbonized hybrids at 800 °C with 6.5 wt% MnO_2 , 21 wt% MnO_2 , 30 wt% MnO_2 and 60 wt% MnO_2 with the rotation rates of 400–2025 rpm.

Figure S14. K–L profiles of carbonated CON, Mn_3O_4 , carbonized hybrids at 800 °C with 6.5 wt% MnO_2 , 21 wt% MnO_2 , 30 wt% MnO_2 and 60 wt% MnO_2 .

Figure S15. The long term stabilities of carbonized CON-32 and carbonized hybrid with 21 wt% MnO_2 at 800 °C under Ar atmosphere.

Material	$R_{ct}(\Omega)$
CON-32	436.5
MnO ₂	261.4
6.5 wt% MnO ₂	152.5
21 wt% MnO ₂	132.7
30 wt% MnO ₂	180.5
60 wt% MnO ₂	199.1

Table S1. Charge transfer resistance (R_{ct}) values of precursors MnO₂, CON, as-prepared hybrids with 6.5 wt%, 21 wt%, 30 wt% and 60 wt% MnO₂.

Material	E _{1/2} (V vs RHE)	Tafel slope (mV dec ⁻¹)	n	Ref
21wt% MnO ₂	0.79	64	3.48	This work
COF@MOF ₈₀₀ -Fe	0.89	80	3.97	1
Pt-COF@MOF ₈₀₀	0.85	21	3.94	2
Ni/Fe-COF@CNT ₉₀₀	0.87	61	3.95	3
LTHT-FeP	0.83	-	-	4
JUC-528	0.70	65.9	3.81	5
Fe _{AC} @Fe _{SA} -N-C	0.912	61	3.9	6
mC-TpBpy-Fe	0.845	-	~4	7
Fe _{0.5} Co _{0.5} Pc-CP NS@G	0.927	-	3.9	8
PTEBbpyCu4.5-HT	0.72 (900 rpm)	-	3.95	9
1"-NP	0.81	70	~4	10
FeNi-COP-800	0.803	91	3.9	11

Table S2. Comparison of ORR electrocatalytic performance of COF based catalysts in 0.1 M KOH.

Material	$R_{ct}(\Omega)$
CON-32	286.7
Mn_3O_4	218.1
6.5 wt% MnO ₂	117.1
21 wt% MnO ₂	96.2
30 wt% MnO ₂	143.8
60 wt% MnO ₂	162.8

Table S3. R_{ct} values of carbonated CON, Mn_3O_4 , carbonized hybrids at 800 °C with 6.5 wt% MnO_2 , 21 wt% MnO_2 , 30 wt% MnO_2 and 60 wt% MnO_2 .

Reference

- Q. Miao, S. Yang, Q. Xu, M. Liu, P. Wu, G. Liu, C. Yu, Z. Jiang, Y. Sun and G. Zeng, Small Struct., 2022, 3, 2100225.
- Y. Guo, S. Yang, Q. Xu, P. Wu, Z. Jiang and G. Zeng, J. Mater. Chem. A., 2021, 9, 23625–13630.
- 3. Q. Xu, J. Qian, D. Luo, G. Liu, Y. Guo and G. Zeng, Adv. Sustain. Syst., 2020, 4, 2000115.
- 4. N. Zion, D. A. Cullen, P. Zelenay and L. Elbaz, Angew. Chem. Int. Ed., 2019, 59, 2483–2489.
- D. Li, C. Li, L. Zhang, H. Li, L. Zhu, D. Yang, Q. Fang, S. Qiu and X. Yao, J. Am. Chem. Soc., 2020, 142, 8104–8108.
- X. Ao, W. Zhang, Z. Li, J. G. Li, L. Soule, X. Huang, W. H. Chiang, H. M. Chen, C. Wang, M. Liu and X. C. Zeng, *ACS Nano*, 2019, **13**, 11853–11862.
- X. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Ye, G. Tian, J. Schmidt and A. Thomas, Chem. Mater., 2019, 31, 3274–3280.
- W. Liu, C. Wang, L. Zhang, H. Pan, W. Liu, J. Chen, D. Yang, Y. Xiang, K. Wang, J. Jiang and X. Yao, *J. Am. Chem. Soc.*, 2019, 7, 3112–3119.
- L. P. Strahl, N. Zion, O. Lori, N. Levy, G. Bar, A. Dahan and L. Elbaz, *Adv. Funct. Mater.*, 2021, **31**, 2100163.
- C. Yang, S. Tao, N. Huang, X. Zhang, J. Duan, R. Makiura and S. Maenosono, ACS Appl. Nano. Mater., 2020, 3, 5481–5488.
- Z. Liao, Y. Wang, Q. Wang, Y. Cheng and Z. Xiang, *Appl. Catal. B-Environ.*, 2019, 243, 204–211.