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ZIF Building units 

Table S1 shows the metals, linkers and functional groups considered. Metals were limited to those 

that can adopt tetrahedral co-ordination and an oxidization state of 2+. Some combinations are 

well-known; for instance, the imidazole (Im), combined with methyl as a functional group, 

provides the original linker (2-methylimidazole (mIm)) of ZIF-8.1 The same holds for benzine-

imidazole (bIm),2,3,4 tetrazole (tz)5 and 4,5-dichloroimidazole (dClIm).6,7,8 The rest of the main 

organic parts considered here are being incorporated in ZIFs for the first time. In terms of 

functional groups, only the following have been used in previous experimental studies: -CH3, (ZIF-

8’s original functional group),9 -NH2,
10,11,12 -H,9 -Br13 and -Cl.13 In total, we have designed 72 ZIF-

8 analogues, by following a combinatory replacement scheme of metals, linkers, and functional 

groups, as reported in Table S1. Details for all the variants can be found in Table S2, while 

additional potential structures are summarized in Table S3. Several of the structures examined in 

this work have not been synthesized experimentally, yet. 

Table S1. Metals, linkers and functional groups used in the ZIF-8 replacement scheme.

Replacement part Type

Metals Zn2+, Co2+, Cd2+, Be2+, Mg2+, Mn2+, Cu2+

Linkers

imidazole (Im), 1-H-1,3-benzimidazole (bIm), tetrazole (tz), 4,5-

dichloroimidazole, (dClIm), 4,5-dibromoimidazole (dBrIm), 4,5-

difthoroimidazole (dFIm), 4,5- (dIIm) 

Functional Groups -H, -CH3, -Cl, -Br, -I, -F, -NH2, -CHO
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Table S2. The ZIF-8 variants considered.

Name Metal Linker Functional Group
1 ZIF-8 Zn mIm -CH3

2 ZIF-67 Co mIm -CH3

3 CdIF-1 Cd mIm -CH3

4 BeIF-1 Be mIm -CH3

5 Cu-ZIF-8 Cu mIm -CH3

6 Mg-ZIF-8 Mg mIm -CH3

7 Mn-ZIF-8 Mn mIm -CH3

8 ZIF-8-Br Zn mIm -Br
9 Co-ZIF-8-Br Co mIm -Br
10 ZIF-8-Cl Zn mIm -Cl
11 ZIF-8-Im_1 Zn mIm/mIm/Im -CH3/-CH3/-H
12 ZIF-8-Im_2 Zn mIm/Im/Im -CH3/-H/-H
13 ZIF-8-Im_3 Zn Im/Im/Im -H/-H/-H
14 ZIF-7-8 Zn mIm/mIm/bIm -CH3/-CH3/-H
15 Co-ZIF-7-8 Co mIm/mIm/bIm -CH3/-CH3/-H
16 Be-ZIF-7-8 Be mIm/mIm/bIm -CH3/-CH3/-H
17 Cu-ZIF-7-8 Cu mIm/mIm/bIm -CH3/-CH3/-H
18 Mg-ZIF-7-8 Mg mIm/mIm/bIm -CH3/-CH3/-H
19 Mn-ZIF-7-8 Mn mIm/mIm/bIm -CH3/-CH3/-H
20 ZIF-7-8-Cl Zn mIm/mIm/bIm -CH3/-CH3/-Cl
21 ZIF-7-8-Br Zn mIm/mIm/bIm -CH3/-CH3/-Br
22 ZIF-7-8-I Zn mIm/mIm/bIm -CH3/-CH3/-F
23 ZIF-7-8-F Zn mIm/mIm/bIm -CH3/-CH3/-Cl
24 Cd-ZIF-7-8-Cl Cd mIm/mIm/bIm -CH3/-CH3/-Br
25 Cd-ZIF-7-8-Br Cd mIm/mIm/bIm -CH3/-CH3/-Br
26 Co-ZIF-7-8-Br Co mIm/mIm/bIm -CH3/-CH3/-Cl
27 Co-ZIF-7-8-Cl Co mIm/mIm/bIm -CH3/-CH3/-Cl
28 Co-ZIF-7-8-F Co mIm/mIm/bIm -CH3/-CH3/-F
29 Co-ZIF-7-8-I Co mIm/mIm/bIm -CH3/-CH3/-I
30 Be-ZIF-7-8-F Be mIm/mIm/bIm -CH3/-CH3/-F
31 Be-ZIF-7-8-I Be mIm/mIm/bIm -CH3/-CH3/-I
32 Cu-ZIF-7-8-F Cu mIm/mIm/bIm -CH3/-CH3/-F
33 Cu-ZIF-7-8-Cl Cu mIm/mIm/bIm -CH3/-CH3/-Cl
34 Cu-ZIF-7-8-Br Cu mIm/mIm/bIm -CH3/-CH3/-Br
35 Cu-ZIF-7-8-I Cu mIm/mIm/bIm -CH3/-CH3/-I
36 Mg-ZIF-7-8-Br Mg mIm/mIm/bIm -CH3/-CH3/-Br
37 Mg-ZIF-7-8-I Mg mIm/mIm/bIm -CH3/-CH3/-I
38 Mn-ZIF-7-8-Br Mn mIm/mIm/bIm -CH3/-CH3/-Br
39 Mn-ZIF-7-8-I Mn mIm/mIm/bIm -CH3/-CH3/-I
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40 Cd-ZIF-7-8-I Cd mIm/mIm/bIm -CH3/-CH3/-I
41 Tetrz-ZIF-8 Zn tetrz -CH3

42 Co-Tetrz-ZIF-8 Co Tetrz -CH3

43 Be-Tetrz-ZIF-8 Be Tetrz -CH3

44 Cu-Tetrz-ZIF-8 Cu Tetrz -CH3

45 Tetrz-ZIF-8-NH2 Zn Tetrz -NH2

46 Be-Tetrz-ZIF-8-NH2 Be Tetrz -NH2

47 Co-Tetrz-ZIF-8-NH2 Co Tetrz -NH2

48 dClm-ZIF-8 Zn dClm -CH3

49 Co-dClm-ZIF-8 Co dClm -CH3

50 Be-dClm-ZIF-8 Be dClm -CH3

51 Cd-dClm-ZIF-8 Cd dClm -CH3

52 Mg-dClm-ZIF-8 Mg dClm -CH3

53 Cu-dClm-ZIF-8 Cu dClm -CH3

54 dFm-ZIF-8 Zn dFm -CH3

55 Co-dFm-ZIF-8 Co dFm -CH3

56 Be-dFm-ZIF-8 Be dFm -CH3

57 Cd-dFm-ZIF-8 Cd dFm -CH3

58 Mg-dFm-ZIF-8 Mg dFm -CH3

59 Cu-dFm-ZIF-8 Cu dFm -CH3

60 dIm-ZIF-8 Zn dIm -CH3

61 Co-dlm-ZIF-8 Co dIm -CH3

62 Be-dlm-ZIF-8 Be dIm -CH3

63 Cu-dlm-ZIF-8 Cu dIm -CH3

64 Cd-dlm-ZIF-8 Cd dIm -CH3

65 Mg-dlm-ZIF-8 Mg dIm -CH3

66 dBrm-ZIF-8 Zn dBrm -CH3

67 Co-dBrm-ZIF-8 Co dBrm -CH3

68 Be-dBrm-ZIF-8 Be dBrm -CH3

69 Cd-dBrm-ZIF-8 Cd dBrm -CH3

70 Mg-dBrm-ZIF-8 Mg dBrm -CH3

71 Cu-dBrm-ZIF-8 Cu dBrm -CH3

72 ZIF-8-CHO Zn mIm -CHO

Table S3. Some possible linkers, metals and functional groups that can be incorporated in ZIF-8 

topology and the resulting number of combinations.

Building unit Name Number Combinations

Linkers
methylimidazole, benzimidazole, methyl-triazole, 

methyl-tetrazole, dimethyl benzimidazole, 
dichloroimidazole, nitroimidazole, 

17 17×9×14 
= 2142
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dinitroImidazole, bromoimidazole, 
dibromoimidazole, fthoroImidazole, 
difthoroImidazole, iodoImidazole, 
diIodoImidazole, cyanoImidazole, 

dicyanoimidazole, Purinate
Metals Be, Cu, Mg, Co, Zn, Fe, Mn, Cd, Ni 9

Functional 
Groups

-CH3, -Br, Cl-, -CHO, I-, -F, -phIm, 
-aIm, -eIm, -SH, -NO2, -NH2

14

Computational methodology

Force field development. For each ZIF-8 variant, a set of case specific force field terms was 

developed.  The force field used consists of the following terms: bond stretching (Eq. 1), bond 

angle bending (Eq. 2) and torsional angle distortion (Eq. 3) for the bonded intra-molecular 

interactions, as well as Lennard Jones (LJ) and electrostatic terms, for the non-bonded intra- and 

inter-molecular interactions (Eq. 4):

𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑙) =
𝑘𝑙

2
(𝑙 ‒ 𝑙0)2 (1)

𝑈𝑏𝑒𝑛𝑑(𝜃) =
𝑘𝜃

2
(𝜃 ‒ 𝜃0)2 (2)

𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝜑) = 𝑘𝜑[1 + cos (𝑚𝜑 ‒ 𝜑0)2] (3)

𝑈(𝑟𝑖𝑗) = 4𝜀𝑖𝑗[(𝜎𝑖𝑗

𝑟𝑖𝑗
)12 ‒ (𝜎𝑖𝑗

𝑟𝑖𝑗
)6] +

1
4𝜋𝜀0

 
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
(4)

where ,  and  are constants that characterize the bond length, bond angle and torsional angle 𝑘𝑙 𝑘𝜃 𝑘𝜑

stiffness, respectively; and  correspond to the bond length, bond angle and torsional angle, 𝑙, 𝜃 𝜑

respectively, and subscript  refers to the equilibrium value;  and  are the Lennard-Jones 0 𝜀𝑖𝑗 𝜎𝑖𝑗

energy and size parameters, is the distance between atoms  and ,  is the charge at atom  and 𝑟𝑖𝑗 𝑖 𝑗 𝑞𝑖  𝑖

 is the permittivity of vacuum.𝜀0

More specifically, we have used the values of AMBER for the Lennard-Lones parameters, while 

we calculated all bonding term (bond lengths, angles, etc.) parameters and the charges with the use 
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of DFT calculations, following the same procedure as in our recent works.14,15,16 The hybrid 

density functional B3LYP with a large basis set (6-311g++(2d,2p)) was used with a dense 

integration grid (‘ultrafine’).17,18 For ZIFs with Cd (which has 48 electrons) and/or I (which has 53 

electrons), we used the Def2TZVPPD basis set which has a similar accuracy (triple-zeta-valence 

with two sets of polarization functions as well as diffuse functions) but includes an effective core 

potential (ECP) to replace the innermost 38 electrons in the metal. The clusters we used for each 

ZIF in our DFT calculations are shown in detail in the file that includes the force field values 

(ESI_3.xls).

Previously published forcefields were used to describe the interactions between the guest 

molecules and ZIF analogues. More specifically, O2, CH4, C2H6, C2H8, C3H8, C3H10, n-C4H10 and 

iso-C4H10, were modeled through a united atom (UA) representation, using the TraPPE-UA.19 H2 

and He were modeled with the force fields from the work of Velioglu and Keskin20 and Talu and 

Mayers,21 respectively. N2 was modelled as a three-site molecule: two atoms are placed 1.1 Å apart 

to account for the moment of inertia of the molecule. A third fictional atom is placed between the 

two N atoms, which is massless but carried the appropriate charge. This arrangement facilitates an 

accurate quadrupole moment for the molecule.22 The model accounts for the flexibility of the bond 

angles, while bond lengths are considered fixed. The TraPPE force field was adopted for the CO2 

guest molecule, which consists of a three-point charge linear molecule with fixed bond lengths of 

1.16 Å.19

Simulations. Each modification was reconstructed on the molecular level, in the form of a super-

cell, which corresponds to a box of 2×2×2 unit cells. Then, each ZIF variant underwent 

equilibration with Molecular Dynamics (MD) simulations, at the NPT ensemble, at 308 K and 1 

bar for 1 ns, in order to allow for correct framework volume adjustment. The importance of 

applying an MD simulation at the NPT ensemble prior to the main simulations should be 

underlined because each new replacement unit affects the framework’s volume, which in turn can 

affect the resulting aperture size. Thus, considering a common volume value across the different 

ZIF simulation boxes would be incorrect. Then, the structures underwent a similar thermal 

equilibration, at the NVT ensemble (again at 308 K) for 1 ns. By following a procedure that we 

reported in previous works,15 we have processed the trajectories of the aperture’s linkers and 
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extract distributions of aperture sizes, from which we calculated the average aperture size for each 

new ZIF. The thermostat in all simulations was Nose-Hoover and the time step was set to 1fs. The 

length of the umbrella sampling simulations was 200-500 ps. More details on the MD simulation 

parameters can be found in our earlier studies.23 The measurement of aperture and stretched 

aperture sizes (size of the aperture when a gas penetrant lies in its center), by assuming either 

circular or elliptical shapes have been presented previously.23,15 Figure S1(a) shows the resulting 

distribution of aperture sizes in our dataset.

(a) (b)

Figure S1. Bar plots showing the distribution of values of our dataset for (a) aperture and (b) the 

logarithm of calculated diffusivities (the units of the diffusivity in our work are in m2/sec).

The diffusivity of several gas molecules (Table S4) was calculated in each of the 72 ZIFs. The 

most popular approach for estimating the diffusivity from molecular simulations, is the calculation 

of the mean-square displacement (MSD) from which the self-diffusivity can be extracted.24 In a 

similar manner, the corrected diffusivity can be estimated by the displacement of the center of 

mass of a swarm of penetrants.24,25 However, as the diffusivity decreases these approaches come 

with an increasing computational cost and are subject to high uncertainty. Diffusivities between 

10-12 – 10-14 m2/sec at room temperature, can be estimated by running simulations at a range of 

elevated temperatures and extrapolating at the desired temperature with the use of an Arrhenius-

based equation.23 Nevertheless, our experience has shown that even this approach becomes 

impractical for diffusivities << 10-14 m2/sec.  In our systems, we observed diffusivities much lower 
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than what these approaches can reproduce, therefore we employed dynamically corrected 

transition state theory (dcTST),26 with the use of umbrella sampling.27 TST depicts very slow 

diffusion as a succession of prolonged periods of random collisions of a molecule with the walls 

of a cage, succeeded by a sudden crossing through an opening to an adjacent cage. Information 

about the implementation of TST in our calculations can be found in our previous work.16 

Table S4. The gas molecules considered, along with their properties. 

Mass vdW diameter28 Kinetic diameter28 Acentric factor29

(g/mol) (Å) (Å)
He 4.00 2.66 2.60 -0.390
H2 2.01 2.76 2.89 -0.217
O2 32.00 2.94 3.46 0.022

CO2 44.01 3.24 3.30 0.225
N2 28.00 3.13 3.64 0.037

CH4 16.04 3.25 3.80 0.011
C2H4 28.05 3.59 3.90 0.087
C2H6 30.07 3.72 4.00 0.099
C3H6 42.08 4.03 4.50 0.142
C3H8 44.10 4.16 4.30 0.152

n-C4H10 58.12 4.52 4.50 0.200
i-C4H10 58.12 4.80 4.42 0.183

To minimize the computational time, we assumed infinite dilution calculations (one guest 

molecule per ZIF). Contrary to conventional MD methods, which are subject to a high statistical 

uncertainty as guest molecules concentration drops, TST-based diffusivities come with 

exceptionally small errors for infinite dilution estimations (~10% in the calculations of this work). 

More specifically, for each diffusivity calculation fifty (50) evenly spaced umbrellas with a spring 

of 5,000 – 50,000 kJ/mol/nm2 force constant were sampled along the axis that connects the centers 

of two adjacent cages and passes through the aperture’s center. The complete set of the 50 

umbrellas was repeated 5-10 times, with different initial random seeds. Then, the umbrellas’ 

trajectories were analyzed with the weighted histogram analysis method (WHAM). We opted for 

the Bayesian Bootstrapping30 approach of the histograms to produce the free energy curve, which 

allows for an accurate error estimation. In all cases, cubic periodic boundary conditions were 
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applied to the three directions of the box and a cut-off distance of 13Å was imposed for the van 

der Waals interactions. The time step was set at 1.0 fs, and the integration was accomplished with 

the velocity-Verlet integration algorithm. The particle mesh Ewald method (PME) was used for 

the description of the electrostatic interactions. Figure S1(b) shows the distribution of calculated 

diffusivities in our dataset.

Defining the sizes for the building units

The size of the linkers and functional groups is estimated by simple length calculations as 

explained below. It should be mentioned that the first publication to report aperture measurements 

in ZIFs considered a Pauling van der Waals radius for hydrogen, which now is used in all XRD 

reported works.2 Thus, for the sake of consistency, we stick to the Pauling van der Waals radii, R, 

for all outermost atoms.31 These are shown in Table S5.

Table S5. Crystallographic van der Waals radii31 for the outermost atoms of the aperture in the 

various linkers and functional groups considered in our ZIF modifications.

R (Å)
H F Cl Br I O N

1.20 1.35 1.80 1.95 2.15 1.40 1.50

Linkers

The length of a linker is the sum of distances and the van der Waals radii of the linker’s terminal 

atoms (vdW), as shown in Figure S2. Im, dClm, dFm, dIm, dBrm share the same ring architecture 

and the measurement is shown in Figure S2(a), where the atom depicted as yellow can be hydrogen 

(mIm), Cl (dClm), F (dFm), Br (dBrm) and I (dIm). Tetrz and bIm linker’s measurement is shown 

in Figure S2(b) and (c), respectively. The calculated length of all the linkers used are reported in 

Table S6.
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Figure S2. Geometric parameters for (a) for Im, dClm, dFm, dIm and dBrm, (b) tetrz and (c) bIm, 

linkers. 

Table S6. Linker lengths (all values are in Å).

Linker d1 d2 vdW Length
Im 2.16 1.08 1.20 4.44

dClm 2.16 1.74 1.80 5.70
dFm 2.16 1.35 1.35 4.86
dBrm 2.16 1.90 1.95 6.01
dIm 2.16 2.10 2.15 6.41
bIm 3.72 1.08 1.20 6.00
tetrz 2.16 - 1.50 3.66

Functional groups

The functional group’s length measurement starts from the upper carbon atom of the imidazole 

ring as shown in Figure S3. For the terminal atoms of the group, the corresponding Pauli van der 

Waals radii are added. Results are provided in Table S7. 



S11

Figure S3. Geometries for (a) for -H, -Cl, -F, -I and -B, (b) -CH3, (c) -NH2 and (d) -CHO.

Table S7. Functional group lengths (all values are in Å).

Functional group d1 d2 vdW Length

-H 1.10 1.20 2.30
-Cl 1.74 1.80 3.54
-F 1.35 1.35 2.70
-I 2.10 2.15 4.25

-Br 1.90 1.95 3.85
-CH3 1.48 1.10 1.20 3.78
-NH3 1.44 1.29 1.20 3.93
-CHO 1.47 1.22 1.40 4.09

Descriptors

The aperture is formed by three organic linkers. Therefore, we have used three families of 

descriptors (linker 1, 2 and 3) with four features per family (i.e., mass and length of linker and 

functional group) adding up to twelve basic descriptors per ZIF. Additionally, the ionic radius of 

the metal as well as apertureAtom_σ and apertureAtom_ε were employed. The latter two stand for 

the Lennard-Jones σ and ε parameters, of the outermost linker atom forming the aperture, as 

discussed in the previous section. Finally, the aperture and stretched aperture sizes were also used 

to describe the ZIF variants, while penetrants were described by means of mass, acentric factor, 

van der Waals and kinetic diameters (Table S4). Overall, there are 17 descriptors for the 

framework, 4 descriptors for each gas molecule and an extra feature (stretched aperture) referring 

to the gas-framework interaction. Table S8 presents the descriptors in detail.

Table S8. ZIF- and gas-related descriptors employed in our ML models.
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Aperture (Å) Diameter of the aperture – it is used as a descriptor only in the ML 
model of Fig. 3

Stretched Aperture (Å) Diameter of the aperture when a gas molecule lies in its center - it is 
used as a descriptor only in the ML model of Fig. 3

Predicted aperture (Å) Diameter of the aperture – it is predicted by M1, and it is used as a 
descriptor in M2 (dual-step ML model of Fig. 4)

IonicRad (Å) (Å) Ionic radius of ZIFs metal center
apertureAtom_sigma (Å) σ of the outermost atom of the linker forming the aperture

apertureAtom_e (Å) ε of the outermost atom of the linker forming the aperture
LinkerLength1
LinkerLength2
LinkerLength3

(Å) Length of each of the three organic linkers of the aperture 

LinkerMass1
LinkerMass2
LinkerMass3

(g/mol) Mass of each of the three organic linkers of the aperture

Func_lenght1
Func_lenght2
Func_lenght3

(Å) Length of the functional group of each of the three organic linkers of the 
aperture

Func_mass1
Func_mass2
Func_mass3

(g/mol) Mass of the functional group of each of three organic linkers of the 
aperture

Mass (g/mol) Mass of the gas molecule
AcentricFactor Acentric factor of the gas molecule

Size_vdW (Å) Van der Waals diameter of the gas molecule
Size_kinDiam (Å) kinetic diameter of the gas molecule

Machine Learning. The implementation of the steps, that are described below, was carried out in 

Python3 programming environment with the help of the scikit-learn library.

1. Data preparation: The data were subjected to a harmonization process in order to be used 

in the ML models. The standard scaler was used to rescale the variables in order to have 

zero mean unit variance, removing thus large differences of magnitude among the 

predictors. The latter affects the weights and parameters of many ML algorithms, such as 

linear regression, but not tree-based models. In Random Forest (RF) and Decision Tree 

(DT) algorithms, the use of non-scaled data may change the location of the data split and 
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thus affect the order of features. With the aforementioned data pre-treatment this type of 

bias is eliminated.  

2. Algorithms: The main algorithm that was used in our analysis was RF regressor (general 

model of Figure 3 and the dual model M1 and M2). RF is suitable for avoiding overfitting, 

but it has the limitation that at least three descriptors are needed. Thus, for M2_simple that 

operates with only two descriptors (ZIF aperture and gas vdW diameter), we used the DT 

algorithm.  Both DT and RF offer the flexibility to perform importance feature analysis 

that enables the extraction of physicochemical information. Moreover, the overall result of 

splitting and branching can be visualized, assessed, and explained. The dataset was split to 

train and test partitions with the K-fold cross-validation protocol:32 the data are randomly 

split into K non-overlapping parts, namely folds. Then, one of the folds is selected to serve 

as the test set, while the rest of K-1 folds constitute the training set. The procedure is 

repeated for all K folds. Metrics are measured for each iteration and then they are averaged 

over the number of K folds. We used K=5. The hyperparameters of both RF and DT are 

the depth and the measure of quality of a split. The best depth value was extracted from a 

parametric analysis, where the R2 was calculated for different depths, and the depth value 

corresponding to the point where the curve reaches a plateau was kept (Figure S4). 

(a) (b) (c)

Figure S4. R2 as a function of the depth for the models (a) M1, (b) M2_simple and (c) M2.

An additional analysis was executed to verify that we avoid over-fitting with our models, 

as follows: the R2 was calculated separately for the training and test set.
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(a) (b) (c)

Figure S5. R2 as a function of the depth, separately calculated for the train and test set (a) 

M1, for the models (b) M2_simple and (c) M2.

As shown in Figure S5, the test is always considerably below the train test in terms of 

performance, even after convergence has been reached. This is a direct confirmation that 

our ML models are not overfitted. Our analysis led us to follow a depth value of 3 for the 

ML model that predicts the aperture (M1 in Figure 4 of the main text) and 6 for the ML 

models that predict the diffusivity (M2 and M2_simple in Figure 4 of the main text).

3. Metrics: During the analysis three metrics were used in order to assess different aspect of 

the process:

a. The importance feature metric was used to assess the contribution of different 

predictors in the diffusion process inside ZIFs. The metric is available for both RF 

& DT. It was used in RF and essentially revealed which predictors are used for 

fitting the data (“responsible for establishing order to the dataset”). 

b. For assessing the performance per prediction value of the M1, M2 and M2_simple 

models, the R2 score was chosen. It is a measure of the average squared error 

between predicted and true values, hence, but it does not reveal the variance.

c. For assessing the performance of the whole distribution of predicted values of the 

M1, M2 and M2_simple models over actual values, the explained variance (EV) 

metric was chosen. It shows to what extend our ML model reproduces the variance 

of the original values distribution.

R2 and EV are complementary and show not only how close the values are (R2) but also 

the similarity of distributions (EV).
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Computational Tools and Software. All DFT calculations were performed with the Gaussian 09 

suite of programs.33 The GROMACS open-source molecular simulation code (version 4.6.5)34 was 

used for the energy minimization of initial structures and for all equilibrium MD simulations, 

umbrella sampling simulations and test particle insertions. The pull code of GROMACS was used 

for the umbrella sampling. The WHAM method was applied with the use of the g_wham code.30 

FORTRAN codes developed in house were used for the calculation of the correction factor from 

the transmission trajectories and for the aperture diameter measurement of each ZIF. The creation 

and handling of the massive TST-related input files were accomplished with the help of bash 

scripting. All the illustrations of atomistic depictions in this work were created with the use of 

Chimera program.35 The ML workflow was developed by Python336 programming language with 

the help of the scikit-learn library (version 1.0.1).37
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