Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

This journal is © The Royal Society of Chemistry 2022

Supporting Information

On-Chip High-Energy Interdigital Micro-Supercapacitors with 3D Nanotubular Array Electrodes

Fei Li,^{‡a} Anjun Hu, ^{‡a} Xiaoli Zhao,^{‡b} Tongwei Wu,^a Wei Chen,^a Tianyu Lei,^a Yin Hu,^a Ming Huang*^b and Xianfu Wang*^a

- a. State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, 610054 Chengdu, P.R. China. E-mail: xfwang87@uestc.edu.cn.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054 Chengdu, P.R. China. E-mail: xiaoming.huang694@gmail.com
- ‡ These authors contributed equally to this work.

Fig. S1. (a, b) Photographs of polycarbonate (PC) membrane. (c, d) Top-view and cross-section SEM images of PC membrane.

Fig. S2. Photographs of PC membrane after MnO_2 deposition at flat and bending states.

Fig. S3. Geometries of the MSC devices with different patterns.

Fig. S4. Optical microscope images of different interdigital Cr/Au electrodes.

Fig. S5. (a) Schematic illustration showing the fabrication process of 3D MSCs. (b-e) Photographs of the device at different fabrication stages with the same size. (f-h) Photographs of 3D MSC devices with different patterns on flexible PET substrates.

Figure S6. SEM images of on-chip interdigital MSCs under various magnifications.

Fig. S7. SEM images of porous MnO_2 NTAs with different magnifications: (a) top-view of MnO_2 NTAs, (b-d) cross-section view of MnO_2 NTAs, and (e, f) magnified view of MnO_2 nanotubes.

Figure S8. Illustration of van der Pauw technique for the conductivity measurement of MnO_2 NTAs film.

Fig. S9. (a) Low-magnification TEM image of an individual porous MnO_2 nanotube. (b, c) HRTEM images of porous MnO_2 nanotube.

Fig. S10. (a) CV curves of MnO_2 NTAs in 1 M Na_2SO_4 aqueous electrolyte. (b) Discharge curves of MnO_2 NTAs electrode at different current densities.

Figure S11. (a) SEM image of the commercial MnO_2 . (b) SEM image of MnO_2 nanosheets obtained without PC template. (c) CV curves of the commercial MnO_2 , MnO_2 nanosheets, and MnO_2 NTAs at a scan rate of 50 mV s⁻¹ in 1 M Na₂SO₄ aqueous electrolyte. (d) charge/discharge curves of the three samples at a current density of 0.25 A g⁻¹.

Figure S12. (a) Analytics of the voltammetric sweep data for MnO_2 NTAs electrode, sweep rates varied from 2 to 20 mV·s⁻¹. (b-d) CV curves of the electrode with grey shadowed area representing the surface capacitive contribution at: (b) 5 mV·s⁻¹; (b) 10 mV·s⁻¹; (c) 20 mV·s⁻¹.

Figure S13. (a) Electrochemical impedance spectrum at open circuit potential in the frequency range from 0.01 Hz to 100 kHz. (d) Equivalent circuit model. (c,d) Corresponding Bode modulus and Bode phase plots.

Figure S14. (a) Long-term cycling stability of MnO₂ NTAs electrode. (b) XRD pattern of the MnO₂ NTAs after 5000 cycles. (c,d) SEM images of MnO₂ NTAs electrode before and after cycling test.

Fig. S15. Schematic illustration of the diffusion and transport of ions and electrons in the MnO_2 NTAs electrode during charge-discharge process.

Fig. S16. Specific volumetric capacitance at different currents.

Figure S17. CV curves of the 3D MSC of MnO_2 NTAs, 2D MSC of commercial MnO_2 and 2D MSC of MnO_2 nanosheets at a scan rate of 100 mV s⁻¹. (d) Charge/discharge curves of the three samples at a current density of 200 μ A.

Figure S18. Plot of the energy efficiency with current for the 3D MSC device.

Figure S19. Open circuit potential decays of the 3D MSCs.

Fig. S20. Ragone plot of 3D MnO₂ NTAs-based MSCs.

Fig. S21. (a) Capacitance retention as a function of bending cycle numbers. (b) Representative CV curves after different bending cycles.

Fig. S22. (a, b) Photographs of the practical circuit with MSCs, solar cells and a LED. (c, d) A LED was lightened by the charged MSCs.

Figure S23. Photographs of 3D MSCs in series powering a timer.

MSCs	Voltage	Capacitance	Cycling stability	Energy density	Ref.
3D LIG-N-PEDOT	0-0.8 V	720 μ F cm ⁻² (75 μ A cm ⁻²)	96% (10000)	NA	Small 2018 , 14, 1702249 ¹
MPG-MSCs	0-1.0 V	80.7 μ F cm ⁻² (1 V s ⁻¹)	98.3% (100000)	2.5 mWh cm ⁻³	Nat. Commun. 2013, 4, 2487 ²
LPG-MPS	0-0.9 V	$3.9 \text{ mF cm}^{-2} (0.3 \text{ mA cm}^{-2})$	93% (20000)	0.98 mWh cm^{-3}	Nano Energy 2016 , 26, 276-285 ³
B-3D-PCP	0-1 V	$7.15 \text{ mF cm}^{-2} (100 \text{ mV s}^{-1})$	98% (30000)	7.1 mWh cm ⁻³	Nano Energy 2018 , 53, 182–188 ⁴
3D LIG-MSCs	0-0.6 V	$0.62 \text{ mF cm}^{-2} (5 \text{ mV s}^{-1})$	100% (10000)	$0.92 \ \mu Wh \ cm^{-2}$	Adv. Funct. Mater. 2019, 29, 19028605
graphene	0-1.0 V	$0.7 \text{ mF cm}^{-2} (10 \text{ mV s}^{-1})$	77 % (11000)	1 mWh cm ⁻³	ACS Nano 2017, 11, 8249-82566
3D CNT arrays	0-1.0 V	11 F cm ⁻³ (0.3 mA cm ⁻²)	93% (10000)	2 mWh cm ⁻³	Carbon 2019,155, 453-4617
3D WJM graphene	0-1.8 V	$5.3 \text{ mF cm}^{-2} (125 \ \mu\text{A cm}^{-2})$	98% (10000)	$0.064 \ \mu Wh \ cm^{-2}$	Adv. Funct. Mater. 2019, 29, 18076598
EG	0-1.0 V	$5.4 \text{ mF cm}^{-2} (1 \text{ mV s}^{-1})$	90% (5000)	NA	Adv. Mater. 2016, 28, 2217–2222 ⁹
3D G/CNTCs	0-1.0 V	3.93 mF cm ⁻² (100 mA cm ⁻²)	98.4% (8000)	2.42 mWh cm^{-3}	Nano Lett. 2013, 13, 72–78 ¹⁰
3D GP	0-1.0 V	$1.5 \text{ mF cm}^{-2} (10 \text{ V s}^{-1})$	100% (20000)	$0.38 \ \mu Wh \ cm^{-2}$	small 2017, 13, 1603114 ¹¹
3D MnO ₂ NTAs	0-1.0 V	13.2 mF cm ⁻² (1.8 mA cm ⁻²)	95.1% (10000)	1.9 μW h cm ⁻²	This work
		/16.5 F cm ⁻³		/2.38mW h cm ⁻³	

 Table S1. A detailed comparison of electrochemical performance of various 3D MSCs.

Table S2. Charge transfer resistance (Rct) and internal resistance (Rs) of MnO_2 NTAs-based MSC after different charge/discharge cycles.

Cycling number	Rs	Rct
1	149.9 Ω	80.3 Ω
2000	153.7 Ω	93.4 Ω
5000	159.9 Ω	96.8 Ω
8000	168.8 Ω	101.6 Ω
10000	178.5 Ω	116.1 Ω

References

- 1 W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li and J. Wang, *Small*, 2018, 14, 1702249.
- 2 Z. S. Wu, K. Parvez, X. Feng and K. Müllen, *Nat. Commun.*, 2013, 4, 2487.
- 3 B. Xie, Y. Wang, W. Lai, W. Lin, Z. Lin, Z. Zhang, P. Zou, Y. Xu, S. Zhou, C. Yang, F. Kang and C.-P. Wong, *Nano Energy*, 2016, 26, 276-285.
- 4 C. Kim, D.-Y. Kang and J. H. Moon, *Nano Energy*, 2018, **53**, 182-188.
- 5 X. Shi, F. Zhou, J. Peng, R. a. Wu, Z. S. Wu and X. Bao, *Adv. Funct. Mater.*, 2019, **29**, 1902860.
- 6 J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng and M. Ostling, ACS Nano, 2017, 11, 8249-8256.
- 7 P. He, Z. Ding, X. Zhao, J. Liu, Q. Huang, J. Peng and L.-Z. Fan, *Carbon*, 2019, 155, 453-461.
- 8 S. Bellani, E. Petroni, A. E. Del Rio Castillo, N. Curreli, B. Martín García, R. Oropesa Nuñez, M. Prato and F. Bonaccorso, *Adv. Funct. Mater.*, 2019, 29, 1807659.
- 9 Z. Liu, Z. S. Wu, S. Yang, R. Dong, X. Feng and K. Mullen, Adv. Mater., 2016, 28, 2217-2222.
- 10 J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson and J. M. Tour, *Nano Lett.*, 2013, **13**, 72-78.
- L. Zhang, D. DeArmond, N. T. Alvarez, R. Malik, N. Oslin, C. McConnell, P. K. Adusei, Y. Y. Hsieh and V. Shanov, *Small*, 2017, 13, 1603114.