Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting information

Practical Zn anodes enabled by a Ti-MOF-derived coating for aqueous

batteries

Qiuju Xu^a, Wencai Zhou^b, Tuo Xin^a, Zilong Zheng^b, Xiangcheng Yuan^a, Jinzhang

Liu^{a,*}

^a School of Materials Science and Engineering, Beihang University, Beijing, China

*E-mail: <u>ljz78@buaa.edu.cn</u>

^b Department of Materials and Manufacturing, Beijing University of Technology,

Beijing 100124, China

Experimental Section

Electropolymerization of poly(1,5-naphthalenediamine)

The polymer cathode was prepared by electrodepositing poly(1,5-naphthalenediamine) onto a coating of nanoporous activated carbon (AC). First, a slurry was made by dispersing AC power (YP-80, Kuraray Co.), carbon black, and polyvinylidene difluoride as binder at a weight ratio of 8:1:1 into N-methyl pyrrolidone. The slurry was coated onto a 3 mm-thick carbon fiber felt, followed by a drying process. The mass loading of AC coating is ~31 mg cm⁻². Second, the AC-coated carbon felt was used as work electrode in a three-electrode cell containing 1 M H₂SO₄ solution and 0.02 M 1,5-NAPD molecules. With a Pt foil as counter electrode and an Ag/AgCl reference electrode, the electropolymerization was conducted by running cyclic voltammogram (CV) cycles at 20 mV s⁻¹ within the voltage range from – 0.4 to 1.0 V for 300 cycles. Third, the poly(1,5-NAPD)/AC was rinsed with deionized water and dried overnight.

Electrochemical measurements

An electrochemical workstation (CorrTest CS 310) was used in this experiment. The linear polarization was tested at a voltage sweep rate of 0.5 mV s⁻¹ within the voltage range from – 1.08 to – 0.88 V. A Zn foil as counter electrode and an Ag/AgCl reference electrode were used, and the electrolyte was 3 M ZnSO₄ aqueous solution. The linear sweep voltammetry (LSV) was measured in a 3 M ZnSO₄ aqueous electrolyte at a voltage sweep rate of 0.1 mV s⁻¹. Hydrogen gas evolution would be occurred when the potential is below – 1.05 V. The cycling performance of the MnO₂-based full cells was measured by the battery test system (LAND CT3001A) in the voltage range of 0.9 – 1.9 V. Electrochemical impedance spectroscopy (EIS) of the cells were conducted on the electrochemical workstation over the frequency range 100 kHz – 0.01 Hz.

Density function theory simulation

All the calculations were performed with density function theory (DFT) as implemented in CP2K/*Quickstep* package,¹ while method D3 developed by Grimme et al.² includes the dispersion correction and adds van der Waals interaction to the conventional KohnSham potential energy. The function of the standard Perdew-Bueke-Ernzerhof (PBE) generalized gradient approximation (GGA),³ was employed for exchange correction interactions, within the framework of Gaussian and plan wave (GPW) method.⁴ The wave functions of the valence electrons were expanded in terms of Gaussian functions with molecularly optimized (MOLOPT) double ζ polarized basis sets (m-DZVP),⁵ which ensures a small basis set superposition error (BSSE) in gas and condensed phase, and core electrons were described with norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials.⁶ The energy cutoff for the plane-wave was set at 500 Ry. All the atoms are allowed to relax until the force on each atom is less than 0.01 eV/Å.

Structural characterizations

Fig. S1 shows FESEM images of as-prepared Ti-MOF. Each Ti-MOF granule is regularly shaped, with width of ~ 800 nm and thickness of 400 nm. Fig. S2 shows a XRD pattern of the Ti-MOF product.

Fig. S1 (a) Low- and (b) high-magnification FESEM images of the Ti-MOF precursor.

Fig. S2 XRD pattern of the Ti-MOF precursor.

The Ti-MOF was converted into TiO_2/NC after being calcined in Ar. A FESEM image of the TiO_2/NC granules is shown in Fig. S3a. Correspondingly, EDS elemental mappings for Ti, O, C, and N distributions over the TiO_2/NC granules are shown in Fig. S3b.

Fig. S3 (a) FESEM image and (b) corresponding element mappings of $TiO_2@NC$ granules.

The TiO₂ sample was obtained by calcining Ti-MOF in air. Our XRD analysis confirms the anatase TiO₂, as shown in Fig. S4a. A FESEM image of this TiO₂ product is shown in Fig. S4b. Although the carbon was burned out, TiO₂ nanoparticles were inter-connected and the original shape of Ti-MOF was maintained. The NC product was also obtained by etching away TiO₂ in the TiO₂/NC product using HCl solution. The XRD pattern in Fig. S4c shows a broad peak of graphitic carbon, and no any peak from TiO₂. Also, the NC granules maintain the original cubic shaped of Ti-MOF, as shown in Fig. S4d.

Fig. S4 (a) XRD pattern and (b) FESEM image of anatase TiO₂ derived from Ti-MOF.
(c) XRD and (d) FESEM image of the NC product made by etching away TiO₂ in TiO₂/NC composite.

Fig. S5 shows a survey XPS spectrum of the TiO₂/NC product.

Fig. S5 Survey XPS spectrum of the TiO₂/NC composite.

BET measurement of the TiO₂/NC composite

Fig. S6 shows the BET measurement result of the TiO_2/NC samples. According to the N₂ adsorption-desorption isotherm in Fig. S6a, the specific surface area of TiO_2/NC composite is determined to be 138 m² g⁻¹. The pore size distribution of this this sample is shown in Fig. S6b.

Fig. S6 BET measurement result of the TiO_2/NC product. (a) N_2 adsorption/desorption curves at room temperature. (b) BJH pore size distribution.

Wettability tests on NC and TiO₂/NC coatings

Fig. S7 Contact angle of (a) the NC coating and (b) the TiO_2/NC coating.

Anti-corrosion performance

A bare Zn foil and a Zn@TiO₂/NC disk were kept in two vials containing 3 M ZnSO₄ solution, respectively, as shown in Fig. S8a. After being immersed for one week, the originlly shiny Zn foil presented white color products due to corrosion, while the black Zn@TiO₂/NC remained unchanged in appearance, as shown in Fig. S8c. Our XRD analysis revealed that the byproduct over corroded bare Zn is $ZnSO_4(OH)_6$ •xH₂O, and the Zn@TiO₂/NC sample after 1-week immersion in ZnSO₄ solution was almost free of this byproduct, as shown in Fig. S8b.

Fig. S8 (a) Optical photographs of a bare Zn disk and a Zn@TiO₂/NC disk immersed

in 3M ZnSO₄ electrolyte for 7 days. (b) XRD patterns of the bare Zn and the $Zn@TiO_2/NC$ foil before and after the natural corrosion process in ZnSO₄. (c) Optical photographs of a bare Zn disk and a Zn@TiO₂/NC disk before and after the natural corrosion test.

Electrochemical tests

Two symmetric pouch cells using bare Zn and $Zn@TiO_2/NC$, respectively, were cycled at identical current density, and the results are shown in Fig. S9.

Fig. S9 Cycling performance of symmetric pouch cells using bare Zn and $Zn@TiO_2/NC$, respectively.

In order to demonstrate the efficacy of Zn@TiO₂/NC in suppressing hydrogen gas evolution, a high-capacity poly(1,5-NAPD)/AC cathode based on carbon fiber felt was made. The thickness of carbon fiber felt is 3 mm and the mass loading of poly(1,5-NAPD)/AC is over 30 mg cm⁻², which can provide a high areal capacity over 5 mAh cm⁻². Thus the opposite cathode can be stripped/plated at a high current and with large depth beyond 10 μ m. Generally, the rate of H₂ generation is related to the areal current density of the anode. Hence, suppression of H₂ generation at a high charge-discharge current is critical for a practical ZIB. In our experiment, a beaker-based full cell was used to observe the H₂ evolution over bare Zn or Zn@TiO₂/NC surfaces when charged/discharged at 20 mA cm⁻². As shown in Fig. S10a and b, with prolonging the cycling time, more and more bubbles were emerged over the bare Zn anode. However, for the Zn@TiO₂/NC anode, it was nearly free of bubbles after being cycled for 10 cycles (Fig. S10a). After 20 cycles, a few bubbles were emerged near the top edge of the anode, presumably the current near the electrolyte surface is higher.

Fig. S10 Beaker-based full cells using a high-capacity poly(1,5-NAPD)/AC cathode to observe the H₂ evolution behaviors of the bare Zn and the Zn@TiO₂/NC by running charged/discharged cycles at 20 mA cm⁻².

Fig. S11 shows chronoamperometry (CA) curves of a bare Zn anode and a $Zn@TiO_2/NC$ anode under constant voltage of - 210 mV.

Fig. S11 Chronoamperometry (CA) curves of a $Zn@TiO_2/NC$ anode and a bare Zn anode at constant potential of - 210 mV.

Fig. S12 Cross-sectional FESEM image of a cycled bare Zn anode.

Half cells using Zn@NC and Zn@TiO₂ anodes, respectively to match with Ti were cycled at 2 mA cm⁻² with set capacity of 1 mAh cm⁻², and the results are shown in Fig.

S13. For other two half cells using $Zn@TiO_2/NC$ and bare Zn anodes, respectively, their variations of Coulombic efficiency (CE) in the cycling process in shown in Fig. S14a. Also, voltage-capacity plots of the two cells tested at 5 mA cm⁻² with set capacity of 1 mAh cm⁻² are shown in Fig. S14b and c, respectively.

Fig. S13 Charge/discharge curves for (a) Ti $\|Zn@NC$ and (b) Ti $\|Zn@TiO_2$ asymmetric cells at current density of 2 mA cm⁻² and set capacity of 1 mAh cm⁻².

Fig. S14 (a) Variations of CE values of a Ti $\|Zn \|$ and a Ti $\|Zn \|$ TiO₂/NC cell at current density of 5 mA cm⁻² and set capacity of 1 mAh cm⁻². The charge/discharge curves of

(b) the Ti||Zn cell and (c) the Ti||Zn@TiO₂/NC cell after different cycles.

Fig. S15 shows room-temperature EIS spectra of three symmetric cells using bare Zn, Zn@TiO₂/NC, and Zn@TiO₂, respectively. The R_{ct} values of the three anodes are in the sequence of Zn@TiO₂/NC < Zn@TiO₂ < Zn.

Fig. S15 Room-temperature Nyquist plots of symmetric cells using bare Zn, $Zn@TiO_2$ and $Zn@TiO_2/NC$ anodes.

Fig. S16 Linear polarization curves of symmetric cells using Zn@TiO₂/NC and bare Zn, respectively.

The consequence of H_2 evolution could make the cell swell or even burst. Figure S17a and b show two symmetric cells using bare Zn and Zn@TiO₂/NC, respectively, after the cycling test.

Fig. S17 Optical photographs of (a) a Zn||Zn and (b) a $Zn@TiO_2/NC||Zn@TiO_2/NC$ symmetric cell after being cycled.

Symmetric cells using Zn@TiO₂/NC, Zn@TiO₂, and bare Zn were further tested by running charge-discharge cycles at different current densities and capacities. Cycling performances of the two symmetric cells using bare Zn and Zn@TiO₂/NC, respectively, tested at 0.5 mA cm⁻² and 0.25 mAh cm⁻², are compared in Fig. S18. In Fig. S19, cycling stabilities of three cells using bare Zn, Zn@TiO₂, and Zn@TiO₂/NC, respectively, and tested at 2 mA cm⁻² and 1 mAh cm⁻², were compared. For the cycling performances of cells tested at higher current, Fig. S20a shows the results of two cells using bare Zn and Zn@TiO₂/NC, respectively, tested at 10 mA cm⁻² and 1 mAh cm⁻². From the practical point of view, a high capacity of ZIB cathode helps increasing volumetric energy density, thus the metal anode is also required to offer a high areal capacity in operation. Hence, we tested the symmetric cell using Zn@TiO₂/NC at 10 mA cm⁻² and 5 mAh cm⁻², which means a fast charge/discharge rate and large depth of ~ 8.5 µm for Zn stripping/platting. As shown in Fig. S20b, the Zn@TiO₂/NC anode could sustain 200 cycles even operated at 10 mA cm⁻² and 5 mAh cm⁻².

Fig. S18 Cycling performances of symmetric cells using bare Zn and Zn@TiO₂/NC, respectively, tested at 0.5 mA cm⁻² and set capacity of 0.25 mAh cm⁻².

Fig. S19 Cycling performances of symmetric cells using bare Zn, Zn@TiO₂, and Zn@TiO₂/NC, respectively, tested at 2 mA cm⁻² and set capacity of 1 mAh cm⁻².

Fig. S20 Cycling performance of (a) Zn||Zn and $Zn@TiO_2/NC||Zn@TiO_2/NC$ symmetric cells at 10 mA cm⁻² and set capacity of 1 mAh cm⁻², and (b) the $Zn@TiO_2/NC||Zn@TiO_2/NC$ cell at 10 mA cm⁻² and set capacity of 5 mAh cm⁻².

The two symmetric cells using bare Zn and Zn@TiO₂/NC, respectively, were tested by recording the dependence of voltage on time while applying a constant current for electrodeposition. Fig. S21a-c show the voltage-time profiles of the two symmetric cells when applied constant current at 1, 2, and 5 mA cm⁻², respectively. Apparently, the peak current of Zn@TiO₂/NC is smaller than that of the bare Zn. Comparisons of their peak current values at 1, 2, and 5 mA cm⁻², respectively, are shown in Fig. S21d.

Fig. S21 Voltage-time plots showing galvanostatic nucleation overpotentials of a $Zn||Zn \text{ cell and a } Zn@TiO_2/NC||Zn@TiO_2/NC \text{ cell tested at current densities of (a) 1, (b) 2, and (c) 5 mA cm⁻². (d) Comparisons of peak potentials between the two cells.$

Fig. S22 shows FESEM images of a bare Zn anode after being cycled at 5 mA cm⁻² for 60 h. I can be seen that this Zn electrode was suffered from severe dendrite growth.

Fig. S22 (a) low- and (b) high-magnification FESEM images showing the surface morphologies of the bare Zn after being cycled at 5 mA cm⁻² and set capacity of 1 mAh cm⁻² for 60 h.

The surface morphologies of $Zn@TiO_2$ and Zn@NC after being cycled in symmetric cells are shown in Fig. S23.

Fig. S23 FESEM images showing surface morphologies of (a, b) the Zn@TiO₂ and (c,

d) the Zn@NC in symmetric cells after the cycling test.

Characterizations of $\alpha\mbox{-}MnO_2$ cathode material

Fig. S24 FESEM images of as-prepared α -MnO₂ nanorods at (a) low and (b) high magnifications.

Fig. S25 XRD pattern of the α -MnO₂ nanorods.

Fig. S26 Nyquist plots of the MnO_2 -based full cells with bare Zn and Zn@TiO₂/NC anodes, respectively.

Table S1 The charge-transfer resistance (Ω) of the symmetrical cells with bare Zn and the Zn-TiO₂@NC anode at various temperatures.

Temperature (°C)	$Zn\left(\Omega ight)$	Zn-TiO ₂ @NC (Ω)
25	1380	171
40	692	130
50	455	108
60	313	94
70	198	81
80	149	69

Electrode	Current	Areal	Voltage	Life	Ref.
	density	capacity	hysteresis	(h)	
	(mA cm ⁻²)	(mAh cm ⁻²)	(mV)		
100TiO ₂ @Zn	1	1	57.2	150	41
MOF-coated Zn	3	0.5	80	500	12
MXene@Zn	1	1	41.5	300	42
PAM-Zn	2	4	46.5	280	13
MOF-based Zn	1	1	20	400	20
Zn-Graphite	0.1	0.1	28	200	43
ZnS@Zn	2	2	≈50	1100	25
SEI-Zn	5	1	50	220	34
Zn In	1	1	≈120	510	27
Zn@ZIF	2	2	30	700	22
100Al ₂ O ₃ @Zn	1	1	≈50	500	26
502 glue-coated Zn	2	1	≈55	400	28
Zn-TiO ₂ @NC	5	1	50	1100	This
	2	1	20	750	work

 Table S2 Comparison of cycling performance for our work with recently reported anodes in symmetric cells.

[S1] VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. *Comput. Phys. Commun.* 2007, 127 (11), 114105.

[S2] Grimme, S. FESEMiempirical Gga-Type Density Functional Constructed with a Long-Range Dispersion Correction. *J. Comput. Chem.* **2006**, 27, 1787.

[S3] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865-3868. [S4] Lippert, B. G.; Parrinello, J. H.; Michele, A hybrid Gaussian and plane wave density functional scheme. *Mol. Phys.* **1997**, 92 (3), 477-488.

[S5] VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. *J. Chem, phys.* **2007**, 127 (11), 114105.

[S6] Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. *Phys. Rev. B* **1996**, 54 (3), 1703-1710.