Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Operando synchrotron X-ray studies of MnVOH@SWCNT nanocomposites as cathodes for high-performance aqueous zinc-ion batteries

Sanna Gull, Shao-Chu Huang, Chung-Sheng Ni, Shih-Fu Liu, Wei-Hsiang Lin, Han-Yi Chen* Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

* Corresponding author: Prof. Han-Yi Chen (<u>hanyi.chen@mx.nthu.edu.tw</u>)

Cathode	Anode	Electrolyte	Potential window / V	Specific capacity	Cycling performance	Ref.
Al _{0.84} V ₁₂ O _{30.3} · nH ₂ O	Zn foil	3 M Zn(CF ₃ SO ₃) ₂	0.2 1.6	380 mA h g ⁻¹ at 0.05 A g ⁻¹	107% capacity retention after 3000 cycles at 4 A g^{-1}	[S1]
$Mg_{0.34}V_2O_5{\cdot}nH_2O$	Zn foil	3 M Zn(CF ₃ SO ₃) ₂	0.2 1.8	352 mA h g ⁻¹ at 100 mA g ⁻¹	97% capacity retention after 2000 cycles at 5 A g ⁻¹	[82]
$Zn_{0.25}V_2O_5{\cdot}nH_2O$	Zn foil	1 M ZnSO ₄	0.5 1.4	300 mA h g ⁻¹ at 50 mA g ⁻¹	80% capacity retention after 1000 cycles at 2.4 A g^{-1}	[\$3]
CaV_6O_{16} ·3H ₂ O	Zn foil	3 M Zn(CF ₃ SO ₃) ₂	0.2 1.6	367 mA h g ⁻¹ at 50 mA g ⁻¹	100% capacity retention after 300 cycles at 0.5 A g^{-1}	[S4]
V ₂ O ₅ /CNT	Zn foil	1 M ZnSO ₄	0.2 1.7	312 mA h g ⁻¹ at 1000 mA g ⁻¹	81% capacity retention after 2000 cycles at 1 A g ⁻¹	[\$5]
VO ₂ /Graphene	Zn foil	3 M Zn(CF ₃ SO ₃) ₂	0.3 1.3	276 mA h g ⁻¹ at 1000 mA g ⁻¹	99% capacity retention after 1000 cycles at 4 A g^{-1}	[S6]
$Zn_3[Fe(CN)_6]_2$	Zn foil	3 M ZnSO ₄	0.8 1.9	66 mA h g ⁻¹ at 60 mA g ⁻¹	81% capacity retention after 200 cycles at 0.3 A g ⁻¹	[S7]
Polyaniline	Zn foil	1 M Zn(CF ₃ SO ₃) ₂	0.5 1.5	95 mA h g ⁻¹ at 5000 mA g ⁻¹	92% capacity retention after 3000 cycles at 5 A g^{-1}	[S8]
γ -MnO ₂	Zn foil	1 M ZnSO ₄	1.0 1.8	285 mA h g ⁻¹ at 0.05 mA cm ⁻²	63% capacity retention after 40 cycles at 0.05 mA cm ⁻²	[89]
poly(Li ₂ S ₆ -random- (1,3- diisopropenylbenzen e)) (poly(Li ₂ S ₆ -r- DIB) copolymer	Zn foil	1 M Zn(TFSI) ₂ + 21 M LiTFSI	0.1 2.4	400 mA h g ⁻¹ at 1000 mA g ⁻¹	50% capacity retention over 1600 cycles at 1 A g ⁻¹	[S10]
Se/CMK-3	Zn foil	1 M Zn(TFSI) ₂	0.0 2.2	398 mA h g ⁻¹ at 1000 mA g ⁻¹	81.2% capacity retention after 500 cycles at 1 A g^{-1}	[811]
5 wt% SWCNT	Zn foil	3 M Zn(CF ₃ SO ₃) ₂	0.2 1.6	381 mA h g ⁻¹ at 1000 mA g ⁻¹	89% capacity retention after 300 cycles at 5 A g ⁻¹	This work

 Table S1. Comparison of various cathodes in aqueous zinc-ion batteries.

Figure S1. FESEM image of (a) MnVOH, and (b) SWCNT. HRTEM images of MnVOH with: (c) 13.2 Å interlayer spacing; (d) 3.4 Å interlayer spacing (inset is SAED pattern). (e) TEM-EDX mapping images of MnVOH.

Figure S2. HRTEM images: (a) MnVOH; (b) 5 wt% SWCNT; (c) SWCNT.

Figure S3. (a) Surface area, (b) pore size distribution curves, and (c) pore size distribution smaller than mesopores for MnVOH, 2.5 wt% SWCNT, 5 wt% SWCNT, and 10 wt% SWCNT.

Figure S4. (a) Raman spectrum of SWCNT and MnVOH. (b) TGA curves collected over a temperature range of 25–550 °C for MnVOH and 5 wt% SWCNT in Ar atmosphere. (c) TGA curves collected over a temperature range of 25–700 °C for SWCNT, MnVOH, 2.5 wt% SWCNT, 5 wt% SWCNT, and 10 wt% SWCNT in air atmosphere.

Figure S5. Contact angle measurement of the 5 wt% SWCNT nanocomposite material.

 Table S2. Weight percentage of the SWCNT in three MnVOH@SWCNT nanohybrids in precursors and final products.

Form	Weight	percentage	(wt%)
Precursors	2.5	5	10
Final products	0.3	2.4	18.2

Figure S6. XPS wide spectrum of 5 wt% SWCNT: (a) Survey, (b) V 2p_{3/2}, and (c) C 1s and (d) O 1s.

Figure S7. XPS spectrum of MnVOH: (a) Survey, (b) V 2p_{3/2}, and (c) O 1s; XPS spectrum of SWCNT (d) Survey, (e) C 1s, and (f) O 1s.

Figure S8. Electrochemical performance: (a) Cyclic voltammetry of MnVOH, 5 wt% SWCNT, and SWCNT at a scan rate of 1.0 mV s⁻¹. GCD curves of (b) 5 wt% SWCNT, and (c) MnVOH at a current density at 0.1 A g⁻¹.

Figure S9. CV curves collected at different scan rates $(0.1-1.8 \text{ mV s}^{-1})$ for (a) 5 wt% SWCNT, (c) MnVOH. Determination of the b-value at intercalation and deintercalation peaks of five peaks obtained in the CV curves for (b) 5 wt% SWCNT, (d) MnVOH.

Figure S10. (a) Coulombic efficiency vs. cycles for MnVOH, 2.5 wt% SWCNT, 5 wt% SWCNT, and 10 wt% SWCNT. (b) Ragone plots of SWCNT, MnVOH, and 5 wt% SWCNT.

Figure S11. (a–b) Nyquist plots at fully charged state during 1st, 2nd, 3rd, and 4th cycles; (c–d) ln(I) vs. time of chronoamperometry.

Figure S12. Comparison of the diffusion coefficient of the 5 wt% SWCNT and MnVOH electrodes measured using EIS method.

Table S3. Zn ²⁺ Diffusion	Coefficient of ZIB	Cathode Materials.
--------------------------------------	--------------------	--------------------

Material	Zn ²⁺ diffusion coefficient	Method	
	$(cm^2 s^{-1})$		Ref.
V ₂ O ₅ .nH ₂ O/Graphene	6.0 X 10 ⁻¹³	EIS	[S12]
MnVO	3.2 X 10 ⁻¹²	EIS	[813]
V ₂ O ₅ ·nH ₂ O	3.3 X 10 ⁻¹³	GITT	[S14]
$Mg_{0.14}V_2O_{5+\delta}$ ·nH ₂ O	2.0 X 10 ⁻¹³	GITT	[S14]
$Cu_{0.15}V_2O_{5+\delta}$ ·nH ₂ O	1.6 X 10 ⁻¹²	GITT	[S1]
$Al_{0.84}V_{12}O_{30.3}$ · nH ₂ O	5.6 X 10 ⁻¹³	EIS	[S1]
$KV_{12}O_{30-v}$ ·nH ₂ O	6.6 X 10 ⁻¹⁴	EIS	[815]
5 wt% SWCNT	2.0 X 10 ⁻¹¹	PITT	This work
5 wt% SWCNT	5.1 X 10 ⁻¹⁰	EIS	This work

100	_	

Figure S13. Normalized synchrotron V K-edge XANES spectra of MnVOH and 5 wt% SWCNT.

Figure S14. Ex-situ XPS of Mn 2p in the pristine, discharge to 0.2 V, and charge to 1.6 V states in the first cycle.

Figure S15. XRD patterns of pristine powder, background, and OCV for *operando* XRD measurement.

Figure S16. SEM images and the corresponding EDS mapping images of fully discharged (a) and charged (b) electrode materials of MnVOH@SWCNT (5 wt% SWCNT).

References:

- [S1] J. Zheng, C. Liu, M. Tian, X. Jia, E. P. Jahrman, G. T. Seidler, S. Zhang, Y. Liu, Y. Zhang, C. Meng and G. Cao, Nano Energy, 2020, 70, 104519.
- [S2] F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, ACS Energy Lett., 2018, 3, 2602–2609.
- [S3] D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah and L. F. Nazar, Nat. Energy, , DOI:10.1038/nenergy.2016.119.
- [S4] X. Liu, H. Zhang, D. Geiger, J. Han, A. Varzi, U. Kaiser, A. Moretti and S. Passerini, *Chem. Commun.*, 2019, 55, 2265–2268.
- [S5] B. Yin, S. Zhang, K. Ke, T. Xiong, Y. Wang, B. K. D. Lim, W. S. V. Lee, Z. Wang and J. Xue, *Nanoscale*, 2019, 11, 19723–19728.
- [S6] X. Dai, F. Wan, L. Zhang, H. Cao and Z. Niu, *Energy Storage Mater.*, 2019, **17**, 143–150.
- [S7] L. Zhang, L. Chen, X. Zhou and Z. Liu, *Sci. Rep.*, 2015, **5**, 1–11.
- [S8] F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu and J. Chen, *Adv. Funct. Mater.*, 2018, **28**, 1–8.
- [S9] M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi and J. Kim, *Chem. Mater.*, 2015, 27, 3609–3620.
- [S10] Y. Zhao, D. Wang, X. Li, Q. Yang, Y. Guo, F. Mo, Q. Li, C. Peng, H. Li and C. Zhi, Adv. Mater., 2020, 32, 1–10.
- [S11] Z. Chen, F. Mo, T. Wang, Q. Yang, Z. Huang, D. Wang, G. Liang, A. Chen, Q. Li, Y. Guo, X. Li, J. Fan and C. Zhi, *Energy Environ. Sci.*, 2021, **14**, 2441–2450.
- [S12] M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. T. Mueller, L. Mai, J. Liu and J. Yang, *Adv. Mater.*, 2018, **30**, 1–6.
- [S13] C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang and G. Cao, *Energy Environ. Sci.*, 2019, **12**, 2273–2285.
- [S14] C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang, M. Yan, Z. Wang, Z. Yin, J. Yang and G. Cao, J. Mater. Chem. A, 2020, 8, 7713–7723.
- [15] M. Tian, C. Liu, J. Zheng, X. Jia, E. P. Jahrman, G. T. Seidler, D. Long, M. Atif, M. Alsalhi and G. Cao, *Energy Storage Mater.*, 2020, 29, 9–16.