## Screening binary alloys for electrochemical CO<sub>2</sub> reduction

### towards multi-carbon products

Jiang Li<sup>a,b</sup>, Joakim Halldin Stenlid<sup>a,b</sup>, Michael T. Tang<sup>a,b</sup>, Hongjie Peng<sup>a,b</sup>, Frank Abild-Pedersen<sup>b,\*</sup> <sup>a</sup>SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA <sup>b</sup>SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States \*Corresponding author: <u>abild@slac.stanford.edu</u>

# **Supporting Information**

#### Supplementary Note 1: Gibbs free energy correction

To directly obtain the reaction energies  $\Delta G_{rxn}$  from energetic scaling relationship and use them for the selectivity maps, we used adsorption free energies, *G*, instead of electronic energies to construct those scaling relationships. *G* is affected by the selected gas phase free energies as the references. Here we made the same assumption as Peterson et al.<sup>1</sup> did in 2010 that gaseous products in the pathway were calculated at partial pressures corresponding to the Faradaic yields reported by Hori et al.<sup>2</sup>. In our previous paper,<sup>3-4</sup> we provided details of free energy calculations of gas phases, including the assumed fugacity for gas phases, along with calculated electronic energies ( $E_{raw}$ ), DFT correction ( $E_{BEEF-vdW}$ ), corrected electronic energies ( $E_{ele} = E_{raw} + E_{BEEF-vdW}$ ), zeropoint energies (ZPE), enthalpic temperature correction ( $\int C_p dT$ ), entropy contribution (-*TS*), chemical potential ( $\mu = E_{ele} + ZPE + \int C_p dT - TS$ ), and the total correction (( $\mu - E_{ele} = ZPE + \int C_p dT - TS$ )). The free energy corrections of gas phase references CO(g), H2O(g), and H2(g) are provided in **Table S1**.

| 14010 01011 |          |               |                    |               |      |               |       |       |                 |
|-------------|----------|---------------|--------------------|---------------|------|---------------|-------|-------|-----------------|
| Species     | Fugacity | $E_{\rm raw}$ | $E_{\rm BEEF-vdW}$ | $E_{\rm ele}$ | ZPE  | $\int C_p dT$ | -TS   | μ     | $\mu - E_{ele}$ |
|             | (Pa)     | (eV)          | (eV)               | (eV)          | (eV) | (eV)          | (eV)  | (eV)  | (eV)            |
| CO(g)       | 5562     | 0.00          |                    | 0.00          | 0.13 | 0.09          | -0.69 | -0.46 | -0.46           |
| $H_2O(g)$   | 3534     | 0.00          |                    | 0.00          | 0.57 | 0.10          | -0.67 | 0.00  | 0.00            |
| $H_2(g)$    | 101325   | -0.09         | 0.09               | 0.00          | 0.27 | 0.09          | -0.40 | -0.04 | -0.04           |

| Table | S1.         | Free | energy | corrections | of ga | s nhase  | referenc    | es <sup>3-4</sup> |
|-------|-------------|------|--------|-------------|-------|----------|-------------|-------------------|
| Table | <b>D1</b> . | ricc | unugy  | corrections | UI ga | ιο μπαου | I CICI CIIC | US.               |

Reaction energetics are given relative to gas-phase CO,  $H_2O$ , and  $H_2$ . Besides, an overbinding correction to CO adsorption energy was applied, except the cases where CO is adsorbed on coinage metals (Cu, Ag, Au) top sites. This is done since generalized gradient approximations (GGA) functionals generally position the unfilled  $2\pi^*$  orbital at a too low energy relative to the metal d-

states. The overbinding correction can be estimated from the harmonic vibrational frequencies for the CO\* internal stretch mode ( $v_{co}$ ), i.e.,  $E_{CO-overbinding} = 1.8 - 0.0008 v_{co}$ .<sup>5</sup>

| Metal | $v_{co}$    | $E_{\rm CO-overbinding}$ | ZPE <sub>CO*@top</sub> | ZPE <sub>C*@4-fold</sub> | $G_{\rm CO^*(a)top}$ | $G_{C^*(a)4-fold}$ |
|-------|-------------|--------------------------|------------------------|--------------------------|----------------------|--------------------|
| (100) | $(cm^{-1})$ | (eV)                     | (eV)                   | (eV)                     | (eV)                 | (eV)               |
| Fe    | 1939.9      | 0.248                    | 0.221                  | 0.073                    | -0.425               | -0.164             |
| Co    | 1986.4      | 0.211                    | 0.212                  | 0.093                    | -0.778               | -0.755             |
| Ni    | 2039.3      | 0.169                    | 0.199                  | 0.101                    | -0.816               | -1.057             |
| Mo    | 1943        | 0.246                    | 0.185                  | 0.09                     | -0.781               | -2.135             |
| Ru    | 1993.4      | 0.205                    | 0.222                  | 0.089                    | -1.097               | -1.194             |
| Rh    | 2001.7      | 0.199                    | 0.229                  | 0.082                    | -1.024               | -1.025             |
| Pd    | 2045.6      | 0.164                    | 0.178                  | 0.089                    | -0.534               | -0.718             |
| W     | 1944.9      | 0.244                    | 0.185                  | 0.099                    | -1.008               | -2.912             |
| Re    | 1963.8      | 0.229                    | 0.242                  | 0.097                    | -1.307               | -2.615             |
| Os    | 2002.1      | 0.198                    | 0.234                  | 0.089                    | -1.400               | -1.423             |
| Ir    | 2031.3      | 0.175                    | 0.254                  | 0.083                    | -1.353               | -1.006             |
| Pt    | 2075        | 0.140                    | 0.204                  | 0.084                    | -0.968               | -0.476             |
| Cu    | 2055.5      | 0.000                    | 0.178                  | 0.093                    | -0.100               | 0.956              |
| Zn    | 2025.4      | 0.180                    | 0.161                  | 0.079                    | 0.608                | 1.150              |
| Ag    | 2074.5      | 0.000                    | 0.171                  | 0.069                    | 0.383                | 2.885              |
| Au    | 2073.1      | 0.000                    | 0.178                  | 0.068                    | 0.325                | 2.512              |
| Al    | 1972.9      | 0.222                    | 0.170                  | 0.08                     | 0.534                | 0.191              |
| Ga    | 2143.6      | 0.085                    | 0.164                  | 0.053                    | 0.537                | 1.848              |
| In    | 2143.6      | 0.085                    | 0.180                  | 0.051                    | 0.543                | 2.419              |
| Si    | 1972.4      | 0.222                    | 0.199                  | 0.081                    | 0.677                | 1.103              |
| Ge    | 2150.8      | 0.079                    | 0.174                  | 0.065                    | 0.516                | 1.729              |
| Sn    | 2150.2      | 0.080                    | 0.188                  | 0.062                    | 0.530                | 2.138              |
| Pb    | 2149        | 0.081                    | 0.158                  | 0.057                    | 0.542                | 2.576              |
| As    | 1962.6      | 0.230                    | 0.215                  | 0.078                    | 0.729                | 0.154              |
| Sb    | 2138.3      | 0.089                    | 0.183                  | 0.069                    | -1.893               | 0.698              |
| Bi    | 2147.1      | 0.082                    | 0.157                  | 0.059                    | 0.540                | 1.784              |

Table S2 Adsorption free energies of CO\* and C\* on pure metal (100) surfaces.

In this work, we have calculated the ZPE of CO\* and C\* on different metal surfaces and found that ZPE varies very little for the different metals. The mean value of the  $ZPE_{CO^*@top}$  is 0.194 eV with a standard deviation of 0.027 eV; the mean value of the  $ZPE_{C^*@4-fold}$  is 0.078 eV with a standard deviation of 0.014 eV. In this work, we therefore apply free energy corrections for CO\* of 0.53 eV and for C\* of 0.57 eV as calculated on Cu(100), as a correction to all the CO\* and C\* adsorption energies calculated on different metal and metal alloy (**Table S2** and **S3**) surfaces (free adsorption energy is obtained by adding the free energy correction and overbinding correction (for CO) to the calculated potential adsorption energy ). These specific free energy corrections of 0.53

eV for CO\* and 0.57 eV for C\* on Cu(100) have also been extrapolated and applied in our previous work.<sup>4</sup> We note, that the CO\* adsorption energy on pure Sb is abnormal compared with other pblock elements, which is a consequence of severe surface disorder of Sb due to the CO\* adsorption event. This Sb data point was not included in **Figure 2** in the main text.

**Table S3** Adsorption free adsorption energy of CO\* and C\* on the (100) surface of the L1<sub>2</sub> alloy.  $E_{\text{CO-overbinding}}$  for CO adsorption on the atop site of the alloy surface is approximated by the overbinding correction of CO on pure metal listed in **Table S2**.

| L1 <sub>2</sub> alloy (100) | $E_{\rm CO-overbinding}(\rm eV)$ | $G_{\mathrm{CO}^{*}(\widehat{a})\mathrm{top}}\left(\mathrm{eV}\right)$ | $G_{C^*@4-fold}(eV)$ |
|-----------------------------|----------------------------------|------------------------------------------------------------------------|----------------------|
| Cu <sub>3</sub> Fe          | 0.248                            | -0.381                                                                 | 0.041                |
| Cu <sub>3</sub> Co          | 0.211                            | -1.038                                                                 | -0.848               |
| Cu <sub>3</sub> Ni          | 0.169                            | -0.924                                                                 | -0.605               |
| Cu <sub>3</sub> Mo          | 0.246                            | -1.085                                                                 | -2.020               |
| Cu <sub>3</sub> Ru          | 0.205                            | -1.398                                                                 | -1.552               |
| Cu <sub>3</sub> Rh          | 0.199                            | -1.160                                                                 | -1.143               |
| Cu <sub>3</sub> Pd          | 0.164                            | -0.229                                                                 | 0.836                |
| Cu <sub>3</sub> W           | 0.244                            | -1.310                                                                 | -2.349               |
| Cu <sub>3</sub> Re          | 0.229                            | -1.774                                                                 | -2.655               |
| Cu <sub>3</sub> Os          | 0.198                            | -1.953                                                                 | -2.451               |
| Cu <sub>3</sub> Ir          | 0.175                            | -1.592                                                                 | -1.658               |
| Cu <sub>3</sub> Pt          | 0.140                            | -0.678                                                                 | 0.180                |
| Cu <sub>3</sub> Zn          | 0.000                            | -0.116                                                                 | 1.568                |
| Cu <sub>3</sub> Ag          | 0.000                            | -0.059                                                                 | 1.693                |
| Cu <sub>3</sub> Au          | 0.000                            | -0.018                                                                 | 1.741                |
| Cu <sub>3</sub> Al          | 0.000                            | 0.007                                                                  | 0.313                |
| Cu <sub>3</sub> Ga          | 0.000                            | 0.043                                                                  | 1.168                |
| Cu <sub>3</sub> In          | 0.000                            | 0.114                                                                  | 1.625                |
| Cu <sub>3</sub> Si          | 0.000                            | -0.060                                                                 | 0.248                |
| Cu <sub>3</sub> Ge          | 0.000                            | -0.002                                                                 | 0.948                |
| Cu <sub>3</sub> Sn          | 0.000                            | 0.164                                                                  | 1.477                |
| Cu <sub>3</sub> Pb          | 0.000                            | 0.094                                                                  | 1.771                |
| Cu <sub>3</sub> As          | 0.000                            | -0.082                                                                 | 2.202                |
| Cu <sub>3</sub> Sb          | 0.000                            | 0.100                                                                  | 2.265                |
| Cu <sub>3</sub> Bi          | 0.000                            | 0.079                                                                  | 2.355                |
| Zn <sub>3</sub> Fe          | 0.248                            | -0.813                                                                 | 0.013                |
| Ag <sub>3</sub> Fe          | 0.248                            | -1.296                                                                 | -1.357               |
| Au <sub>3</sub> Fe          | 0.248                            | -1.092                                                                 | -0.929               |
| Al <sub>3</sub> Fe          | 0.248                            | -0.649                                                                 | -0.358               |
| Ga <sub>3</sub> Fe          | 0.248                            | -0.336                                                                 | 0.990                |
| In <sub>3</sub> Fe          | 0.248                            | -0.875                                                                 | -0.229               |
| Si <sub>3</sub> Fe          | 0.248                            | 0.116                                                                  | 0.656                |
| Ge <sub>3</sub> Fe          | 0.248                            | -0.362                                                                 | -1.435               |
| Sn <sub>3</sub> Fe          | 0.248                            | -0.076                                                                 | 0.022                |

| Pb <sub>3</sub> Fe | 0.248 | -1.272 | -1.149 |
|--------------------|-------|--------|--------|
| Zn <sub>3</sub> Co | 0.211 | -0.893 | -0.147 |
| Ag <sub>3</sub> Co | 0.211 | -0.995 | -0.131 |
| Au <sub>3</sub> Co | 0.211 | -1.235 | -1.053 |
| Al <sub>3</sub> Co | 0.211 | -0.756 | -0.329 |
| Ga <sub>3</sub> Co | 0.211 | -0.637 | 0.371  |
| In <sub>3</sub> Co | 0.211 | -0.645 | -0.335 |
| Ge <sub>3</sub> Co | 0.211 | -0.675 | -1.906 |
| Sb <sub>3</sub> Co | 0.211 | -2.203 | 1.320  |
| Zn <sub>3</sub> Ni | 0.169 | -0.625 | 0.456  |
| Ag <sub>3</sub> Ni | 0.169 | -1.065 | -0.106 |
| Au <sub>3</sub> Ni | 0.169 | -0.958 | 0.047  |
| Al <sub>3</sub> Ni | 0.169 | -0.245 | 0.072  |
| Ga <sub>3</sub> Ni | 0.169 | -0.420 | 0.720  |
| In <sub>3</sub> Ni | 0.169 | -0.824 | 0.106  |
| Si <sub>3</sub> Ni | 0.169 | -0.521 | -2.414 |
| Pb <sub>3</sub> Ni | 0.169 | -1.330 | -0.292 |
| Zn <sub>3</sub> Pd | 0.164 | 0.114  | 1.689  |
| Ag <sub>3</sub> Pd | 0.164 | -0.334 | 1.492  |
| Au <sub>3</sub> Pd | 0.164 | -0.350 | 1.146  |
| Al <sub>3</sub> Pd | 0.164 | 0.401  | 0.663  |
| Ga <sub>3</sub> Pd | 0.164 | 0.162  | 1.376  |
| In <sub>3</sub> Pd | 0.164 | -0.013 | 1.917  |
| Si <sub>3</sub> Pd | 0.164 | -0.515 | -1.341 |
| Ge <sub>3</sub> Pd | 0.164 | -0.125 | 0.834  |
| Sn <sub>3</sub> Pd | 0.164 | -0.220 | 0.765  |
| Pb <sub>3</sub> Pd | 0.164 | -0.224 | 1.409  |
| As <sub>3</sub> Pd | 0.164 | -1.422 | -1.815 |
| Bi <sub>3</sub> Pd | 0.164 | -1.363 | 0.481  |

| $I_{1}$ allow (100) | $\overline{E}$ (aV)          | C (aV)                | C (aV)                                                 | C (aV)                                           |
|---------------------|------------------------------|-----------------------|--------------------------------------------------------|--------------------------------------------------|
| $L_1^2$ alloy (100) | $E_{\rm CO-overbinding}(eV)$ | $G_{CO^*(a,top}(eV))$ | $\frac{G_{C^*\underline{a}4\text{-fold-1}}(ev)}{2221}$ | $\frac{G_{C^*\underline{@}4-fold-2}(ev)}{0.200}$ |
| CuFe                | 0.248                        | -0.391                | 0.321                                                  | 0.306                                            |
| CuCo                | 0.211                        | -0.896                | -0.161                                                 | 0.500                                            |
| CuNi                | 0.169                        | -0.924                | -0.159                                                 | -0.019                                           |
| CuMo                | 0.246                        | -0.927                | -1.032                                                 | -0.953                                           |
| CuRu                | 0.205                        | -1.228                | -0.694                                                 | -0.496                                           |
| CuRh                | 0.199                        | -1.133                | -0.609                                                 | -0.664                                           |
| CuPd                | 0.164                        | -0.401                | 1.027                                                  | 0.573                                            |
| CuW                 | 0.244                        | -1.036                | -1.390                                                 | -1.139                                           |
| CuRe                | 0.229                        | -1.018                | -1.965                                                 | -1.617                                           |
| CuOs                | 0.198                        | -1.222                | -1.033                                                 | 0.007                                            |
| CuIr                | 0.175                        | -1.510                | -1.028                                                 | -0.392                                           |
| CuPt                | 0.140                        | -0.916                | 0.213                                                  | 0.419                                            |
| CuZn                | 0.000                        | 0.039                 | 1.537                                                  | 1.408                                            |
| CuAg                | 0.000                        | -0.091                | 2.903                                                  | 1.823                                            |
| CuAu                | 0.000                        | -0.063                | 2.628                                                  | 2.033                                            |
| CuAl                | 0.000                        | 0.359                 | 1.362                                                  | 0.933                                            |
| CuGa                | 0.000                        | 0.221                 | 1.545                                                  | 1.508                                            |
| CuIn                | 0.000                        | 0.171                 | 2.990                                                  | 1.564                                            |
| CuGe                | 0.000                        | -0.036                | 1.054                                                  | 1.439                                            |
| CuSn                | 0.000                        | 0.114                 | 3.132                                                  | 1.533                                            |
| CuAs                | 0.000                        | -0.010                | 0.286                                                  | 0.663                                            |
| FeZn                | 0.248                        | -0.378                | 0.659                                                  | 0.649                                            |
| FeAl                | 0.248                        | -0.836                | 0.731                                                  | -0.012                                           |
| FeGa                | 0.248                        | -0.341                | 0.708                                                  | 0.797                                            |
| FeSi                | 0.248                        | -0.522                | 1.206                                                  | 1.467                                            |
| FeGe                | 0.248                        | -0.562                | 2.385                                                  | 1.426                                            |
| FePb                | 0.248                        | -0.077                | 1.164                                                  | 1.234                                            |
| FeAs                | 0.248                        | 0.298                 | 1.203                                                  | 0.998                                            |
| CoZn                | 0.211                        | -1.115                | 1.090                                                  | -0.118                                           |
| CoAg                | 0.211                        | -0.809                | 1.961                                                  | -0.431                                           |
| CoAl                | 0.211                        | -1.257                | 1.186                                                  | 0.014                                            |
| CoGa                | 0.211                        | -0.991                | 1.927                                                  | 0.614                                            |
| CoSi                | 0.211                        | -0.137                | 1.309                                                  | 1.833                                            |
| CoGe                | 0.211                        | -0.320                | 2.568                                                  | 1.383                                            |
| CoSn                | 0.211                        | -0.530                | 3.588                                                  | 0.884                                            |
| CoPb                | 0.211                        | -0.490                | 3.410                                                  | -0.444                                           |
| CoAs                | 0.211                        | -0.359                | 2.626                                                  | 1.133                                            |
| CoSb                | 0.211                        | -0.416                | 3.636                                                  | 1.188                                            |
| NiZn                | 0.169                        | -0.749                | 1.603                                                  | 0.809                                            |

**Table S4** Adsorption free energy of CO<sup>\*</sup> and C<sup>\*</sup> on  $L1_0$  alloy (110) surfaces. There are two kinds of 4-fold sites on the (110) surface of the  $L1_0$  alloy for C<sup>\*</sup> adsorption, and we use the most stable of the two adsorption sites in our selectivity map in **Figure 3** in the main text.

| NiAg | 0.169 | -1.002 | 1.665 | 0.088 |
|------|-------|--------|-------|-------|
| NiAl | 0.169 | -0.325 | 1.553 | 0.653 |
| NiGa | 0.169 | -0.209 | 2.115 | 1.269 |
| NiIn | 0.169 | -0.428 | 2.998 | 0.882 |
| NiSi | 0.169 | 0.199  | 1.358 | 1.759 |
| NiGe | 0.169 | -0.061 | 2.624 | 1.577 |
| NiAs | 0.169 | -0.231 | 0.915 | 1.632 |
| NiBi | 0.169 | -0.593 | 3.778 | 0.636 |
| PdZn | 0.164 | -0.035 | 1.992 | 2.523 |
| PdAg | 0.164 | -0.475 | 1.191 | 1.121 |
| PdAu | 0.164 | -0.451 | 0.847 | 1.065 |
| PdAl | 0.164 | 0.336  | 1.521 | 2.371 |
| PdGa | 0.164 | 0.315  | 1.988 | 2.454 |
| PdIn | 0.164 | 0.232  | 3.286 | 2.304 |
| PdSi | 0.164 | 0.466  | 0.984 | 1.462 |
| PdGe | 0.164 | 0.251  | 1.520 | 2.049 |
| PdSn | 0.164 | 0.274  | 3.494 | 2.368 |
| PdPb | 0.164 | 0.072  | 4.018 | 1.983 |
| PdAs | 0.164 | 0.072  | 1.364 | 2.597 |
| PdSb | 0.164 | 0.222  | 3.087 | 2.507 |
| PdBi | 0.164 | 0.028  | 3.559 | 2.466 |



**Figure S1** Selectivity map of  $L_{1_2}(100)$  and  $L_{1_0}(110)$  surfaces at -0.3 V (vs. RHE) at pH 7. The triangle markers denote the  $L_{1_2}$  binary alloys of  $Cu_3A$  (green),  $Cu_3B$  (dark red),  $B_3$ Fe (orange),  $B_3$ Co (pink),  $B_3$ Ni (light blue), and  $B_3$ Pd (gray). The circle ones are the  $L_{1_0}$  alloys of  $Cu_A$  (green),  $Cu_B$ (dark red), BFe (orange), BCo (pink), BNi (light blue), and BPd (gray).



**Figure S2** Selectivity map of  $L_{1_2}(100)$  and  $L_{1_0}(110)$  surfaces at -0.5 V (vs. RHE) at pH 7. The triangle markers denote the  $L_{1_2}$  binary alloys of  $Cu_3A$  (green),  $Cu_3B$  (dark red),  $B_3$ Fe (orange),  $B_3$ Co (pink),  $B_3$ Ni (light blue), and  $B_3$ Pd (gray). The circle ones are the  $L_{1_0}$  alloys of  $Cu_4$  (green),  $Cu_8$ (dark red), BFe (orange), BCo (pink), BNi (light blue), and BPd (gray).



**Figure S3** Selectivity map of  $L_{1_2}(100)$  and  $L_{1_0}(110)$  surfaces at -0.7 V (vs. RHE) at pH 7. The triangle markers denote the  $L_{1_2}$  binary alloys of  $Cu_3A$  (green),  $Cu_3B$  (dark red),  $B_3$ Fe (orange),  $B_3$ Co (pink),  $B_3$ Ni (light blue), and  $B_3$ Pd (gray). The circle ones are the  $L_{1_0}$  alloys of  $Cu_4$  (green),  $Cu_8$ (dark red), BFe (orange), BCo (pink), BNi (light blue), and BPd (gray).



**Figure S4** Selectivity map of  $L_{12}(100)$  and  $L_{10}(110)$  surfaces at -0.9 V (vs. RHE) at pH 7. The triangle markers denote the  $L_{12}$  binary alloys of  $Cu_3A$  (green),  $Cu_3B$  (dark red),  $B_3$ Fe (orange),  $B_3$ Co (pink),  $B_3$ Ni (light blue), and  $B_3$ Pd (gray). The circle ones are the  $L_{10}$  alloys of  $Cu_4$  (green),  $Cu_8$ (dark red), BFe (orange), BCo (pink), BNi (light blue), and BPd (gray).



**Figure S5** Segregation energies of clean (100) surfaces of  $L1_2$  binary alloys. (a)  $Cu_3A$  alloys, (b)  $Cu_3B$  alloys, (c)  $B_3$ Fe alloys, (d)  $B_3$ Co Alloys, (e)  $B_3$ Ni alloys, and (f)  $B_3$ Pd alloys. *A* represents strong CO binding metals (Fe, Co, Ni, Pd, Pt, Mo, Ru, Rh, W, Re, Os, Ir) and *B* represents weak CO binding metals (Zn, Ag, Au, Al, Ga, In, Si, Ge, Sn, Pb, As, Sb, Bi). Some of the binary alloys, mainly the Fe, Co, and Ni-based alloys, are not shown in the figure because of the severe restructuring or decomposing during the DFT geometric optimization. Consequently, these missing alloys are considered unstable.



**Figure S6** Segregation energies of clean (110) surfaces of  $L_{1_0}$  binary alloys. (a) Cu*A* alloys, (b) Cu*B* alloys, (c) Fe*B* alloys, (d) Co*B* Alloys, (e) Ni*B* alloys, and (f) Pd*B* alloys. *A* represents strong CO binding metals (Fe, Co, Ni, Pd, Pt, Mo, Ru, Rh, W, Re, Os, Ir) and *B* represents weak CO binding metals (Zn, Ag, Au, Al, Ga, In, Si, Ge, Sn, Pb, As, Sb, Bi). Some of the binary alloys, mainly the Fe, Co, and Ni-based alloys, are not shown in the figure because of the severe restructuring or decomposing during the DFT geometric optimization. Consequently, these missing alloys are considered unstable.

## Reference

(1) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. *Energy Environ. Sci.* **2010**, *3*, 1311-1315.

(2) Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. *J. Chem. Soc., Faraday Trans.1* **1989**, *85*, 2309-2326.

(3) Tang, M. T.; Peng, H.; Lamoureux, P. S.; Bajdich, M.; Abild-Pedersen, F. From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO<sub>2</sub> reduction. *Appl. Catal. B* **2020**, *279*, 119384.

(4) Peng, H.; Tang, M. T.; Liu, X.; Lamoureux, P. S.; Bajdich, M.; Abild-Pedersen, F. The role of atomic carbon in directing electrochemical CO<sub>(2)</sub> reduction to multicarbon products. *Energy Environ. Sci.* **2021**, *14*, 473-482.

(5) Abild-Pedersen, F.; Andersson, M. P. CO adsorption energies on metals with correction for high coordination adsorption sites–A density functional study. *Surf. Sci.* **2007**, *601*, 1747-1753.