Supporting Information

One-step Synthesis of CeFeO₃ Nanoparticles on Porous-rich Nanocarbon Frameworks Derived from ZIF-8 for Boosted Oxygen Reduction Reaction in pH Value Universal Electrolytes

Zikuan Zhang¹, Haixia Zhang^{1*}, Ying Hou¹, Peizhi Liu¹, Xiaodong Hao³, Yanzhen Liu^{2*}, Bingshe Xu^{1, 3}, Junjie Guo^{1*}

¹ Key Laboratory of Interface Science and Engineering in Advanced Materials

Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, PR

China

² CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese

Academy of Sciences, Taiyuan, 030001, PR China

³ Materials Institute of Atomic and Molecular Science, Shaanxi University of Science

& Technology, Xi'an, 710021, PR China

*Corresponding author

E-mail: <u>zhanghaixia@tyut.edu.cn</u> (H.X. Zhang); <u>liuyz@sxicc.ac.cn</u> (Y.Z. Liu); <u>guojunjie@tyut.edu.cn</u> (J.J. Guo)

Fig. S1. a) FTIR spectra. b) XRD patterns of ZIF-8, Ce-ZIF-8, Fe-ZIF-8, 0.5Ce-Fe-ZIF-8, Ce-Fe-ZIF-8, 1.5Ce-Fe-ZIF-8.

Fig. S2. SEM images of a) NC, b) Ce/NC, c) Fe/ NC, d) 0.5Ce-Fe/NC, e) Ce-Fe/NC, f) 1.5Ce-Fe/NC.

Fig. S3. TEM images of a) NC, b) Ce/NC, c) Fe/NC, d) 0.5Ce-Fe/NC, e) Ce-Fe/NC, f) 1.5Ce-Fe/NC.

Fig. S4. a) HAADF-STEM image of Ce-Fe/NC. b) HRTEM image of Ce-Fe/NC. c) HRTEM images of Ce-Fe/NC.

Fig. S5. a) N₂ adsorption/desorption isotherms of NC, Ce/NC, Fe/NC, 0.5Ce-Fe/NC, Ce-Fe/NC, 1.5Ce-Fe/NC. b) The pore diameter distribution of NC, Ce/NC, Fe/NC, 0.5Ce-Fe/NC, Ce-Fe/NC, 1.5Ce-Fe/NC. c) The XRD patterns of NC, Ce/NC, Fe/NC, 0.5Ce-Fe/NC, Ce-Fe/NC and 1.5Ce-Fe/NC. d) The Raman spectra of NC, Ce/NC, Fe/NC, Fe/NC, Ce-Fe/NC.

There is a distribution of mesopores at 2.24 nm and 3.38 nm in the 0.5Ce-Fe/NC sample. Increasing the addition amount of Fe and Ce, there is a slight increase in the diameter of mesopores in Ce-Fe/NC (3.79 nm) and 1.5Ce-Fe/NC (3.88 nm).

Fig. S6. a) The XPS spectra showing the chemical composition in NC, Ce/NC, Fe/NC, and Ce-Fe/NC. b) XPS N 1s spectra for 0.5Ce-Fe/NC, Ce-Fe/NC and 1.5Ce-Fe /NC.

Fig. S7. a) The XPS C 1s regions of NC, Ce/NC, Fe/NC. b) O 1s spectra for 0.5Ce-Fe/NC, Ce-Fe/NC and 1.5Ce-Fe /NC.

Fig. S8. The XPS Fe 2p regions of a) Ce-Fe/NC and c) Fe/NC. The XPS Ce 3d regions for b) Ce-Fe/NC and d) Ce/NC.

Fig. S9. a) ORR curves of 0.5Ce-Fe/NC, Ce-Fe/NC, 1.5Ce-Fe/NC in 0.1 M KOH electrolyte. b) The polarization curves of Ce-Fe/NC at different rotating speeds; the inset is the corresponding K-L plots. c) Nyquist plots of NC, Ce /NC, Fe/NC and Ce-Fe/NC. d) Chronoamperometric curves of Ce-Fe/NC and Pt/C at 0.7 V versus RHE. e) ORR polarization curves of Ce-Fe/NC before and after 40000 s test at 0.7 V. f) Methanol toxicity tolerance tests of the Ce-Fe/NC and Pt/C by injecting 3% volume of methanol into the electrolyte.

Fig. S10. a) ORR curves of 0.5Ce-Fe/NC, Ce-Fe/NC, 1.5Ce-Fe/NC in 0.1 M HClO₄ electrolyte. b) Tafel slopes of NC, Ce/NC, Fe/NC, Ce-Fe/NC and Pt/C. c) The polarization curves of Ce-Fe/NC at different rotating speeds; the inset is the corresponding K-L plots. d) Chronoamperometric curves of Ce-Fe/NC and Pt/C at 0.5 V versus RHE. e) ORR polarization curves of Ce-Fe/NC before and after 20000 s test at 0.5 V. f) Methanol toxicity tolerance tests of the Ce-Fe/NC and Pt/C by injecting 3% volume of methanol into the electrolyte.

Fig. S11. a) XRD patterns of Ce-Fe/NC before and after 1 M H_2SO_4 acid leaching.ORR polarization curves of Ce-Fe/NC before and after 1 M H_2SO_4 acid leaching in b)0.1MKOHelectrolyteandc)0.1MHClO₄electrolyte.

Catalyst	Ce	Fe
materials	(wt %)	(wt %)
Ce/NC	0.8	
Fe/NC		0.84
Ce-Fe/NC	0.83	0.88

Table S1. The doping content of Ce and Fe in the samples characterized by ICP-OES.

Catalyst	BET surface area
materials	$(m^2 g^{-1})$
NC	939
Ce/NC	1088
Fe/NC	1045
0.5Ce-Fe/NC	1170
Ce-Fe/NC	831
1.5Ce-Fe/NC	883

 Table S2. The BET surface area of as-prepared catalysts.

Catalyst	С	0	Ν	Ce	Fe
materials	(at. %)				
NC	82.92	7.76	9.31	0	0
Ce/NC	81.87	8.43	9.51	0.18	0
Fe/NC	81.22	7.73	10.57	0	0.47
0.5Ce-Fe/NC	83.61	5.1	10.58	0.19	0.48
Ce-Fe/NC	83.36	7.74	8.05	0.29	0.54
1.5Ce-Fe/NC	80.4	8.99	9.63	0.31	0.66

 Table S3. Chemical compositions of as-prepared catalysts detected by XPS spectra.

Catalyst	Pyridinic N	M-N	Pyrrolic N	Graphitic N	Oxidized N
materials	(%)	(%)	(%)	(%)	(%)
NC	50.7	0	28.2	14.3	6.6
Ce/NC	56	6.6	12.6	20.1	4.6
Fe/NC	54.9	7.5	11.7	22.4	3.3
0.5Ce-Fe/NC	45.6	13.9	9.5	21.6	9.4
Ce-Fe/NC	37.3	16.1	13	26.1	7.4
1.5Ce-Fe/NC	43.9	17.9	9.4	18.1	10.7

Table S4. The NC, Ce/NC, Fe/NC and Ce-Fe/NC samples contents of various N-type.

Catalysts	E_1	Ref	
materials	In alkaline media	In acidic media	- Rei.
p-Fe-NCNFs	0.82	0.74	1
C-FeHZ8@g-C ₃ N ₄ -950	0.845	0.78	2
Zn/CoN-C	0.861	0.796	3
Fe-N-C-P/N,P-C	0.87	0.80	4
Fe-Fe ₃ C@Fe-N-C	0.88	0.79	5
Fe-ISAs/CN	0.90	0.773	6
Fe-Zn-N-C	0.918	0.819	7
Fe,Mn/N-C	0.928	0.804	8
Fe/Ni-N _X /OC	0.938	0.84	9
Ce-Fe/NC	0.913	0.791	This work

 Table S5. ORR performance comparison for typical non-precious-metal catalysts.

Catalysts materials	Power density (mW cm ⁻²)	Specific capacity (mA h g ⁻¹)	Energy density (W h kg ⁻¹)	Ref.
FeCo-IA/NC	115.6	635.3	725.6	10
PdMo bimetallene/C	154.2	798	1043	11
CoNi-SAs/NC	101.4	750.9	886.1	12
Co@SNHC	105.8	708		13
CoFe/N-HCSs	96.5	777.4	882.3	14
LCRO82	136	433		15
N-CoS ₂ YSSs	81	744	922	16
Ni-N ₄ /GHSs/Fe-N ₄		777.6	970.4	17
0.05CoO _X @NPC	157.3	887	1020	18
S _{5.84%} -LCO	92	747		19
Ce-5.6%	60	783	963	20
Pt-SCFP/C-12	122	790.4		21
Pt/C	115	596	745	This work
Ce-Fe/NC	142	804	980	This work

 Table S6. Comparison of the performance of primary or rechargeable ZABs

containing various electrocatalysts as air electrodes in liquid electrolytes.

- B.-C. Hu, Z.-Y. Wu, S.-Q. Chu, H.-W. Zhu, H.-W. Liang, J. Zhang and S.-H. Yu, *Energy Environ.* Sci., 2018, 11, 2208-2215.
- 2 Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu, Q. Jia, W. Fan, G. Wang, D. Dang, M. Li, K. Zang, J. Luo, Y. Hu, S. Liao, X. Sun and S. Mukerjee, *J. Mater. Chem. A*, 2019, 7, 5020-5030.
- 3 Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang and X. Sun, *Angew. Chem. Int. Ed.*, 2019, 58, 2622-2626.
- 4 H. Yin, P. Yuan, B.-A. Lu, H. Xia, K. Guo, G. Yang, G. Qu, D. Xue, Y. Hu, J. Cheng, S. Mu and J.-N. Zhang, ACS Catal., 2021, 11, 12754-12762.
- 5 H. Wang, F. X. Yin, N. Liu, R. H. Kou, X. B. He, C. J. Sun, B. H. Chen, D. J. Liu and H. Q. Yin, *Adv. Funct. Mater.*, 2019, **29**, 1901531.
- 6 Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang and Y. Li, Angew. Chem. Int. Ed., 2017, 56, 6937-6941.
- 7 F. Li, X. B. Ding, Q. C. Cao, Y. H. Qin and C. Wang, Chem Commun., 2019, 55, 13979-13982.
- 8 G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.-A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu and J.-N. Zhang, *Nat. Commun.*, 2021, **12**, 1734.
- 9 Z. Zhu, H. Yin, Y. Wang, C. H. Chuang, L. Xing, M. Dong, Y. R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng and H. Zhao, *Adv. Mater.*, 2020, **32**, 2004670.
- 10 L. Chen, Y. Zhang, L. Dong, W. Yang, X. Liu, L. Long, C. Liu, S. Dong and J. Jia, J. Mater. Chem. A, 2020, 8, 4369-4375.
- M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, J.-Y. Ma, F. Lin, D. Su, G. Lu and S. Guo, *Nature*, 2019, 574, 81-85.
- 12 X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng and W. Hu, *Adv. Mater.*, 2019, **31**, 1905622.
- 13 J. Liu, L. Xu, Y. Deng, X. Zhu, J. Deng, J. Lian, J. Wu, J. Qian, H. Xu, S. Yuan, H. Li and P. M. Ajayan, J. Mater. Chem. A, 2019, 7, 14291-14301.
- 14 J. Li, Y. Kang, W. Wei, X. Li, Z. Lei and P. Liu, Chem. Eng. J., 2021, 407, 127961.
- 15 S. G. Chandrappa, P. Moni, D. H. Chen, G. Karkera, K. R. Prakasha, R. A. Caruso and A. S. Prakash, J. Mater. Chem. A, 2020, 8, 20612-20620.
- 16 X. F. Lu, S. L. Zhang, E. Shangguan, P. Zhang, S. Gao and X. W. Lou, Adv. Sci., 2020, 7. 2001178.
- 17 J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu and T. Ma, *Adv. Mater.*, 2020, **32**, 2003134.
- 18 Y. Tan, W. Zhu, Z. Zhang, W. Wu, R. Chen, S. Mu, H. Lv and N. Cheng, *Nano Energy*, 2021, 83, 105813.
- 19 J. Ran, T. Wang, J. Zhang, Y. Liu, C. Xu, S. Xi and D. Gao, Chem. Mater., 2020, 32, 3439-3446.
- 20 J. Qian, T. Wang, Z. Zhang, Y. Liu, J. Li and D. Gao, Nano Energy, 2020, 74, 104948.
- 21 X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai, D. Guan, W. Zhou and Z. Shao, *Adv. Energy Mater.*, 2020, 10, 1903271.