## Supporting Information for

Simultaneously achieving ultrahigh energy storage density and high efficiency in BiFeO3-based

relaxor ferroelectric ceramics via highly disordered multicomponent design

Tao Cui<sup>1</sup>, Ji Zhang<sup>1,\*</sup>, Jian Guo<sup>2</sup>, Xiongjie Li<sup>3</sup>, Shun Guo<sup>1</sup>, Yu Huan<sup>4</sup>, Jing Wang<sup>5,\*</sup>, Shan-Tao Zhang<sup>2</sup>

<sup>1</sup> School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China

<sup>2</sup> National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

<sup>3</sup> Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

<sup>4</sup> School of Material Science and Engineering, University of Jinan, Jinan, 250022, China

<sup>5</sup> State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace

Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

\*Corresponding authors: jizhang@njust.edu.cn; wang-jing@nuaa.edu.cn



Fig. S1 Refined XRD patterns of (a) x = 0, (b) x = 0.05, (c) x = 0.10, (d) x = 0.12

|                           | x = 0     | <i>x</i> = 0.05 | <i>x</i> = 0.08 | <i>x</i> = 0.10 | <i>x</i> = 0.12 |
|---------------------------|-----------|-----------------|-----------------|-----------------|-----------------|
| Space group               | Pm-3m     | Pm-3m           | Pm-3m           | Pm-3m           | Pm-3m           |
| a=b=c                     | 3.97461 Å | 3.97875 Å       | 3.97892 Å       | 3.97951 Å       | 3.97948 Å       |
| $\alpha = \beta = \gamma$ | 90°       | 90°             | 90°             | 90°             | 90°             |
| Cell volume               | 62.789    | 62.986          | 62.993          | 63.022          | 63.020          |
| $R_{ m wp}$               | 3.80      | 3.89            | 3.44            | 3.51            | 3.72            |
| R <sub>p</sub>            | 2.71      | 2.69            | 2.48            | 2.53            | 2.66            |
| $\chi^2$                  | 3.64      | 3.54            | 2.50            | 2.52            | 2.92            |

Table S1 Refined structural parameters of BLF-BST-KNN ceramics.



Fig. S2 Temperature-dependent  $\varepsilon_r$  and tan $\delta$  at various frequencies: (a) x = 0, (b) x = 0.05, (c) x = 0.08, (d) x = 0.10, (e) x = 0.12.



Fig. S3 Composition dependent room temperature  $\varepsilon_r$  and tan $\delta$  values measured at 10 kHz.



Fig. S4 Typical SEM morphologies of BLF-BST-KNN ceramics: (a) x = 0, (b) x = 0.05, (c) x = 0.08, (d) x = 0.10, (e) x = 0.12. The corresponding insets show the grain size distribution.



Fig. S5 Impedance spectra of BLF-BST-KNN ceramics at different temperature: : (a) x = 0, (b) x = 0.05, (c) x = 0.08, (d) x = 0.10, (e) x = 0.12.

|       | x = 0   | x = 0.05 | x = 0.08 | <i>x</i> = 0.10 | <i>x</i> = 0.12 |
|-------|---------|----------|----------|-----------------|-----------------|
| 300°C | 0.68813 | 3.11292  | 4.3131   | 4.04033         | 2.65651         |
| 320°C | 0.37336 | 1.4922   | 1.98776  | 1.90616         | 1.32055         |
| 340°C | 0.20351 | 0.74817  | 0.97265  | 0.95274         | 0.68785         |
| 360°C | 0.1129  | 0.39073  | 0.49     | 0.49672         | 0.37336         |
| 380°C | 0.06413 | 0.21143  | 0.25507  | 0.26806         | 0.20923         |

Table S2 Total resistivity of BLF-BST-KNN ceramics extracted from corresponding impedance spectra.



Fig. S6 Combined patterns of Z" and M" under various frequencies at 340°C: (a) x = 0.05, (b) x = 0.12.



Fig. S7 Room temperature unipolar *P*-*E* curves of x = 0.08 at various electric fields.



Fig. S8 The comparison of  $P_{\text{max}}$  values between this work and other reports.



Fig. S9 (a-c) *P*-*E* curves of samples 1-3 for x = 0.08, respectively. (d)  $W_{\text{rec}}$  and  $\eta$  of the four samples (including the one shown in Fig. 4).



Fig. S10 Room temperature unipolar *P*-*E* curves of x = 0.10 at various electric fields.



Fig. S11 (a-c) *P-E* curves of samples 1-3 for x = 0.10, respectively. (d)  $W_{\text{rec}}$  and  $\eta$  of the four samples (including the one shown in Fig. 4).



Fig. S12 *P*-*E* curves of x = 0.08 ceramic with different thickness and electrode area.



Fig. S13 Unipolar *P-E* curves of x = 0.10 at different (a) temperature, and (d) cumulative cycle numbers, and corresponding (b), (e)  $P_{\text{max}}$ ,  $P_{\text{r}}$ ,  $P_{\text{max}}$ - $P_{\text{r}}$ , and (c), (f)  $W_{\text{rec}}$  and  $\eta$ .

Table S3 Comparison of  $E_b/E_{\text{test}}$ ,  $W_{\text{rec}}$  and  $\eta$  between this work and recently reported BNT-, BTO-, KNN- and BFO-based relaxor ferroelectric ceramics.

| Composition                                                                                                                          | E <sub>b</sub> or E <sub>test</sub><br>(kV/mm) | $W_{\rm rec}$<br>(J/cm <sup>3</sup> ) | η (%) | Ref.                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|-------|------------------------------------------------------|--|
| 0.62BLF-0.30BST-0.08KNN                                                                                                              | 69                                             | 16.3                                  | 85.9  | This work                                            |  |
| 0.60BLF-0.30BST-0.10KNN                                                                                                              | 63                                             | 13.9                                  | 89.6  | This work                                            |  |
| BNT-based                                                                                                                            |                                                |                                       |       |                                                      |  |
| $\begin{array}{l} 0.62Na_{0.5}Bi_{0.5}TiO_{3}\text{-}\\ 0.3Sr_{0.7}Bi_{0.2}TiO_{3}\text{-}\\ 0.08BiMg_{2/3}Nb_{1/3}O_{3}\end{array}$ | 47                                             | 7.5                                   | 92    | Energy Stor. Mater. 38<br>(2021) 113-120             |  |
| 0.8(0.95Bi <sub>0.5</sub> Na <sub>0.5</sub> TiO <sub>3</sub> -<br>0.05SrZrO <sub>3</sub> )-0.2NaNbO <sub>3</sub>                     | 35                                             | 5.55                                  | 82.2  | ACS Appl. Mater. Interfaces 13 (2021) 28484-28492    |  |
| 0.75Bi <sub>0.58</sub> Na <sub>0.42</sub> TiO <sub>3</sub> -<br>0.25SrTiO <sub>3</sub>                                               | 53.5                                           | 5.63                                  | 94    | Energy Stor. Mater. 30<br>(2020) 392-400             |  |
| 0.8Bi <sub>0.5</sub> Na <sub>0.5</sub> TiO <sub>3</sub> -<br>0.2SrNb <sub>0.5</sub> Al <sub>0.5</sub> O <sub>3</sub>                 | 52                                             | 6.64                                  | 96.5  | Nano Energy 75 (2020)<br>105012                      |  |
| $\begin{array}{l} 0.76(0.94Na_{0.5}Bi_{0.5}TiO_{3}\text{-}\\ 0.06BaTiO_{3})\text{-}\\ 0.24CaTi_{0.75}Ta_{0.2}O_{3} \end{array}$      | 41                                             | 9.55                                  | 88    | ACS Appl. Mater. Interfaces<br>14 (2022) 22263-22269 |  |
| BT-based                                                                                                                             |                                                |                                       |       |                                                      |  |

| $\begin{array}{l} 0.9(0.75BaTiO_{3}-\\ 0.25Na_{0.5}Bi_{0.5}TiO_{3})-\\ 0.1Bi(Zn_{0.2}Mg_{0.2}Al_{0.2}Sn_{0.2}Zr_{0.2})\\ O_{3}\\ \hline 0.90P_{2}TiO \end{array}$                                                               | 27.3 | 3.74    | 82.2  | Chem. Eng. J. 427 (2022)<br>131684                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------|---------------------------------------------------|--|
| $0.90Ba11O_3$ -<br>$0.10Bi(Mg_{0.5}Zr_{0.5})O_3@SiO_2$                                                                                                                                                                          | 34.5 | 3.41    | 85.1  | (2020) 2000191                                    |  |
| $0.6BaTiO_3$ - $0.4Bi(Mg_{1/2}Ti_{1/2})O_3$                                                                                                                                                                                     | 34   | 4.49    | 93    | Nano Energy 67 (2020)<br>104264                   |  |
| $0.9Ba_{0.65}Sr_{0.35}TiO_{3}$ -<br>$0.1Bi(Mg_{2/3}Nb_{1/3})O_{3}$                                                                                                                                                              | 40   | 3.34    | 85.71 | ACS Appl. Mater. Interfaces 12 (2020) 30289-30296 |  |
| $\begin{array}{l} 0.6(Ba_{0.75}Sr_{0.25})TiO_{3}\text{-}\\ 0.3Bi(Mg_{0.5}Hf_{0.5})O_{3}\end{array}$                                                                                                                             | 39   | 4.3     | 92    | ACS Appl. Energy Mater. 3<br>(2020) 12254-12262   |  |
|                                                                                                                                                                                                                                 | KNN  | I-based |       |                                                   |  |
| 0.85K <sub>0.5</sub> Na <sub>0.5</sub> NbO <sub>3</sub> -<br>0.15Bi(Ni <sub>0.5</sub> Zr <sub>0.5</sub> )O <sub>3</sub>                                                                                                         | 87   | 8.09    | 88.46 | Energy Stor. Mater. 45<br>(2022) 861-868          |  |
| $\begin{array}{l} 0.85K_{0.5}Na_{0.5}NbO_{3}\text{-} \\ 0.15Bi(Zn_{2/3}Ta_{1/3})O_{3} \end{array}$                                                                                                                              | 60   | 6.7     | 92    | Adv. Funct. Mater. (2021)<br>2111776              |  |
| 0.975K <sub>0.5</sub> Na <sub>0.5</sub> NbO <sub>3</sub> -<br>0.025LaBiO <sub>3</sub>                                                                                                                                           | 34   | 3.60    | 74.2  | ACS Appl. Mater. Interfaces 13 (2021) 28472-28483 |  |
| $\begin{array}{l} 0.925(K_{0.5}N_{a0.5})NbO_{3}\text{-} \\ 0.075Bi(Zn_{2/3}(Ta_{0.5}Nb_{0.5})_{1/3})O_{3} \end{array}$                                                                                                          | 30.7 | 4.02    | 87.4  | J. Materiomics 7 (2021) 780-<br>789               |  |
| 0.9K <sub>0.5</sub> Na <sub>0.5</sub> NbO <sub>3</sub> -0.1BiFeO <sub>3</sub>                                                                                                                                                   | 20.6 | 2       | 61    | Nano Energy 58 (2019) 768-<br>777                 |  |
|                                                                                                                                                                                                                                 | BF-  | based   |       |                                                   |  |
| 0.35BiFeO <sub>3</sub> -0.65SrTiO <sub>3</sub>                                                                                                                                                                                  | 75   | 8.4     | 90    | Small 18 (2022) 2106515                           |  |
| 0.85(0.65BiFeO <sub>3</sub> -0.35BaTiO <sub>3</sub> )-<br>0.15Sr <sub>0.7</sub> Bi <sub>0.2</sub> TiO <sub>3</sub>                                                                                                              | 33   | 4.95    | 73    | Chem. Eng. J. 412 (2021)<br>127555                |  |
| 0.88(0.67BiFeO <sub>3</sub> -0.33BaTiO <sub>3</sub> )-<br>0.12Na <sub>0.73</sub> Bi <sub>0.09</sub> NbO <sub>3</sub>                                                                                                            | 41   | 5.57    | 83.8  | Chem. Eng. J. 417 (2021)<br>127945                |  |
| 0.57BiFeO <sub>3</sub> -0.33BaTiO <sub>3</sub> -<br>0.1NaNbO <sub>3</sub>                                                                                                                                                       | 36   | 8.12    | 90    | Adv. Energy Mater. 10<br>(2020) 1903338           |  |
| $\begin{array}{l} 0.54BiFeO_{3}\text{-}0.4SrTiO_{3}\text{-} \\ 0.06BiMg_{2/3}Nb_{1/3}O_{3}\text{-}0.03Nb_{2}O_{5} \end{array}$                                                                                                  | 46   | 8.2     | 74.1  | Energy Environ. Sci. 13<br>(2020) 2938-2948       |  |
| $Bi_{0.83}Sm_{0.17}Fe_{0.95}Sc_{0.05}O_{3}$                                                                                                                                                                                     | 23   | 2.21    | 76    | J. Eur. Ceram. Soc. 39<br>(2019) 2331-2338        |  |
| 0.61BiFeO <sub>3</sub> -<br>0.33(Ba <sub>0.8</sub> Sr <sub>0.2</sub> )TiO <sub>3</sub> -<br>0.06La(Mg <sub>2/3</sub> Nb <sub>1/3</sub> )O <sub>3</sub> +0.1wt.%<br>MnO <sub>2</sub> +2wt.% BaCu(B <sub>2</sub> O <sub>5</sub> ) | 23   | 3.38    | 59    | J. Eur. Ceram. Soc. 39<br>(2019) 2673-2679        |  |
| 0.43BiFeO <sub>3</sub> -0.45SrTiO <sub>3</sub> -<br>0.12BaTiO <sub>3</sub> +0.1wt.%MnO <sub>2</sub>                                                                                                                             | 49   | 7.3     | 86.3  | J. Am. Ceram. Soc. Doi: 10.1111/jace.18589        |  |