Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Solution-Processed Metal Doping of Sub-3 nm SnO_2 Quantum Wires for Enhanced H_2S Sensing at Low Temperature

Jia Yan,^a Xuyun Guo,^b Ye Zhu,^{b,c} Zhilong Song,^{d,*} and Lawrence Yoon Suk Lee^{a,c,*}

- ^a Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
 E-mail: lawrence.ys.lee@polyu.edu.hk (L. Y. S. Lee)
- ^b Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- ^c Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- ^d Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, China. E-mail: songzl@ujs.edu.cn (Z. Song)

Keywords: tin oxide; gas sensor; quantum wire; oxygen vacancy; metal atom doping

Fig.S1 Schematic diagram of the synthesis of metal-doped SnO₂ (M-SnO₂) quantum wires.

Fig. S2 TEM images of a) SnO₂, b) Cr-SnO₂, c) Mo-SnO₂, and d) W-SnO₂. Insets are histograms showing the distribution of length.

Fig. S3 Side view of model cell structure for DFT calculations of a) OA and b) OLA adsorption energy (E_{ads}) on SnO₂ (110) facets.

Fig. S4 a) XPS survey spectra and high-resolution Sn 3d spectra (enlarged Sn^{2+} peak area) of SnO₂, Cr-SnO₂, Mo-SnO₂, and W-SnO₂ b) before and c) after the heating treatment at 550 °C in air for 12 h.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is @ The Royal Society of Chemistry 2022

Fig. S5 ESR spectra of a) DMPO-•OH and b) DMPO-•O₂⁻ in aqueous and methanol dispersion of SnO₂, Cr-SnO₂, Mo-SnO₂, and W-SnO₂, respectively. c) EPR spectra of SnO₂, Cr-SnO₂, Mo-SnO₂, and W-SnO₂, and W-SnO₂.

Fig. S6 a) Cross-sectional and b) top-view SEM images of SnO_2 thin film on Al_2O_3 ceramic substrate. c) SEM image of Al_2O_3 ceramic substrate.

Fig. S7 A typical H_2S sensing curve of SnO_2 from 20 to 1,000 ppb H_2S at the optimized operation temperature (150 °C).

Fig. S8 Gas-sensing curves and the corresponding response toward H_2S of W-SnO₂-based sensors prepared with different W doping contents.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Fig. S9 A plot of sensor response against the concentration of H₂S.

Fig. S10 Effect of humidity on the sensing performance of W-SnO₂-based gas sensor: a) Gassensing curve and b) sensing response.

	Cr-SnO ₂	Mo-SnO ₂	W-SnO ₂
molar ratio of M/Sn	1.71 at.%	1.79 at.%	2.03 at.%

Table S1 Molar ratio of doped metal in SnO₂ (M/Sn) obtained by STEM–EDS mapping.

Table S2 Comparison of H_2S gas sensor performances at low temperatures.

Sample	Temperature (°C)	H ₂ S Concentration (ppm)	Response ^a	LOD ^b (ppb)	Ref.
W-SnO ₂ QWs ^c	150	0.001 0.1 1.0	0.038 0.538 1.330	0.48	This work
La/ZnO	150	5.0	175.3	50.0	1
CuO/NiO nanowall	133	5.0	35.9	0.5	2
WO ₃ QDs ^d	80	10.0	6.0	56.0	3
BiVO ₄	75	5.0	3.9	62.5	4
In ₂ O ₃ QDs ^d	37	0.5	3.4	4.4	5
SnO ₂ /rGO ^e /PANI ^{,f}	RT ^g	5.0	3.2	50.0	6
CuO/TiO ₂	RT ^g	100	0.88	3000	7
WO ₃ -Bi ₂ WO ₆	RT ^g	0.05	3.4	2	8
Cu-doped In ₂ O ₃	250	50	340.7	1000	9

^{*a*} Response = $R_a/R_g - 1$; ^{*b*} LOD = limit of detections; ^{*c*} QWs = quantum wires; ^{*d*} QDs = quantum dots; ^{*e*} rGO = reduced graphene oxide; ^{*f*} PANI = polyaniline; ^{*g*} RT = room temperature

Gas	H_2S	CH ₄	СО	H ₂	toluene	FA ^a
Broken bond	HS-H	CH ₃ –H	C-0	H–H	CH ₃ –OC ₆ H ₅	H-CHO
Bond energy (kJ mol ⁻¹)	381.0	431.0	1076.5	436.0	273.2	368.40

Table. S3 Properties of the interfering gas molecules.^{10, 11}

^{*a*} FA = formaldehyde

References

- 1. Y. Zhang, C. Wang, L. Zhao, F. Liu, X. Sun, X. Hu and G. Lu, *Sens. Actuators B Chem.*, 2021, **334**, 129514.
- 2. L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang, P. Wang, Y. Xu, S. Gao, H. Zhao, Y. Gao and L. Huo, *J. Hazard. Mater.*, 2020, **385**, 121570.
- 3. H. Yu, Z. Song, Q. Liu, X. Ji, J. Liu, S. Xu, H. Kan, B. Zhang, J. Liu, J. Jiang, L. Miao and H. Liu, *Sens. Actuators B Chem.*, 2017, **248**, 1029-1036.
- 4. C. Li, X. Qiao, J. Jian, F. Feng, H. Wang and L. Jia, Chem. Eng. J., 2019, 375, 121924.
- 5. S. Yang, Z. Song, N. Gao, Z. Hu, L. Zhou, J. Liu, B. Zhang, G. Zhang, S. Jiang, H.-Y. Li and H. Liu, *Sens. Actuators B Chem.*, 2019, **286**, 22-31.
- 6. D. Zhang, Z. Wu and X. Zong, Sens. Actuators B Chem., 2019, 289, 32-41.
- 7. H. He, C. Zhao, J. Xu, K. Qu, Z. Jiang, Z. Gao and Y. Y. Song, ACS Sens., 2021, 6, 3387-3397.
- 8. C. Zhang, K. Wu, H. Liao and M. Debliquy, Chem. Eng. J., 2022, 430, 132813.
- 9. Y. Zhang, S. Han, M. Wang, S. Liu, G. Liu, X. Meng, Z. Xu, M. Wang and G. Qiao, *J. Adv. Ceram.*, 2022, **11**, 427-442.
- 10. Z. S. Hosseini, A. I. zad and A. Mortezaali, Sens. Actuators B Chem., 2015, 207, 865-871.
- 11. Y.-R. Luo, *Handbook of bond dissociation energies in organic compounds*, CRC Press, Boca Raton London New York Washington, D.C., 2002.