Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Protic ethers as highly efficient hydrogen-bond regulators for

aqueous eutectic electrolytes

Xuejun Lu^a, ⁺ Zhenhua Liu^b, ⁺ Li Tao^a, Hao Sun^{b*}, Yulong Liu^b, Jian Liu^{a*}

Experimental

Preparation of aqueous Li-based eutectic (ALE) electrolytes

All chemicals and reagents were analytical grade and used without further purification. The samples preparation process can be referred to previous work, ^[1] where all ALE-based electrolytes were synthesized in molality (mol kg⁻¹) of the resulting solutions.

Characterizations

NMR measurements were carried out on an AVANCE III 400MHz equipment with BBO probe, samples were placed in NMR tubes and analyzed using a separated capillary tube with deuterated methanol (CD₃OD) as the external reference. Differential scanning calorimetry (DSC) analyses were performed in a TA instrument DSC-Q1000 under a N₂ atmosphere. FTIR spectra was performed using EO-SXB IR spectrometer. Raman spectra were recorded using a SENTERRA II model with an excitation wavelength of 532 nm. Contact angle tests were obtained from a goniometer with OCA 15 model.

Electrochemical Measurements

The ionic conductivity of ALE-based electrolytes was tested at room temperature and -20 °C by two symmetric blocking stainless steel (SS) electrodes and calculated according to equation [1]:

$$\kappa = L/(R \cdot A)$$

where L and A are the thickness and effective contacting area between SS electrode and electrolyte, respectively, and R is the resistance obtained by electrochemical impedance spectroscopy (EIS) test.

All electrochemical measurements including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and EIS were performed using a VSP-3e Potentiostat. Coin cell assembly (CR2032) was carried out with symmetrical active carbons (ASAC-30, Canada) electrodes and a spetrator (GF/F), GCD cylcing ability was further tested in a NEWARE battery cycler (CT-4008T-5V50mA-164, Shenzhen, China).

The gravimetric capacitance (C) based on GCD curves was calculated according to equation [2]:

$$C = (I \cdot \Delta t_I) / (2m \cdot \Delta V)$$

where Δt_1 (s) is the discharge time, ΔV (V) is operation voltage excluding the IR drop, I and m are applied current and active material loading on one electrode, respectively. The Coulombic efficiency (*CE*) was determined according to equation [3]:

$$CE = \Delta t_1 / \Delta t_2$$

[3]

[2]

[1]

where Δt_2 (s) is the charge time.

Computational details

All molecular dynamic (MD) simulations were carried out using the Forcite package of Material Studio software. The forcefield was simulated with COMPASS. ALE_{6.6} and ALE-DME_{6.6} with molar ratios as shown in Table S1 were added to a $35 \times 35 \times 35$ Å³ box, respectively. The systems were equilibrated at 298 K in the NVT ensemble for 50 ps with a timestep of 1.0 fs, and the Nose thermostat was used to control the temperature.^[2]

Density functional theory (DFT) computations were carried out using the Dmol³ code^[3,4] within the generalized gradient approximation (GGA) method in the form of the Perdew-Burke-Ernzerhof (PBE)^[4,5]. The convergence energy and Monkhorst-Pack k-point mesh was set to 1.0×10^{-5} Ha and $3 \times 3 \times 1$, respectively. During geometry optimization, the convergence tolerance was set as 1.0×10^{-5} eV for energy, and 0.004 Ha Å⁻¹ for force. A vacuum of 20 Å was used to avoid interactions between periodic images.

Results and Discussion

Figure S1. Molecular structures of LiTFSI and different solvents.

Table S1. Molar ratios of LiTFSI, DMSO, H_2O and different solvents in various electrolytes.

Comula	Molar ratio				
Sample	LiTFSI	DMSO	H ₂ O	Solvent	
ALE _{6.6}	0.753	1	2		
ALE-ACN _{6.6}	0.753	0.75	1.5	0.695	
ALE-DMC _{6.6}	0.753	0.75	1.5	0.317	
ALE-DEC _{6.6}	0.753	0.75	1.5	0.242	
ALE-DMF _{6.6}	0.753	0.75	1.5	0.391	
ALE-DME _{6.6}	0.753	0.75	1.5	0.317	
ALE-DOL _{6.6}	0.753	0.75	1.5	0.386	
ALE-EtOAc _{6.6}	0.753	0.75	1.5	0.324	

Figure S2. Capacitance of various ALE-based electrolytes at different current densities.

Figure S3. CV curves at different scan rates and GCD profiles at different current densities of ALE_{6.6} and ALE-DME_{6.6} electrolytes measured at room temperature.

Figure S4. Electrochemical performance of various ALE-based electrolytes at room temperature. a) ESWs measured with linear sweep voltammetry at a scan rate of 10 mV s⁻¹. b) CV curve at a scan rate of 10 mV s⁻¹. (c) GCD profiles at a current density of 0.5 A g⁻¹. (d) Cycling performance at a current density of 4 A g⁻¹. e) Capacitance before cycling and capacitance retention after 2000 cycles at 4 A g⁻¹.

Figure S5. Nyquist plots of $ALE_{6.6}$ and ALE-DME_{6.6} electrolytes measured before cycling and after 20000 cycles at room temperature with high frequency region magnification.

Samula	Before of	cycling	After 20000 cycles	
Sample	R _e	R _{ct}	R _e	R _{ct}
ALE _{6.6}	5.06	2.37	5.42	8.63
ALE-ACN _{6.6}	2.92	1.59	10.36	28.25
ALE-DMC _{6.6}	4.85	2.00	7.36	2.49
ALE-DEC _{6.6}	5.68	2.29	6.85	3.46
ALE-DMF _{6.6}	5.51	2.16	23.60	4.90
ALE-DME _{6.6}	4.47	1.96	4.78	2.65
ALE-DOL _{6.6}	4.52	2.03	6.95	5.02
ALE-EtOAc _{6.6}	5.17	1.92	13.52	5.54

Table S2. Specific values of R_e and R_{ct} before and after 20000 cycling.

Figure S6. Nyquist plots of other ALE-based electrolytes measured before cycling and after 20000 cycles at room temperature.

Figure S7. Dielectric constant and DNs of H₂O and different organic solvents.

Figure S8. ¹H NMR spectra of ALE_{6.6} and ALE-based electrolytes.

Figure S9. ¹H DOSY spectra of the rest ALE-based electrolytes.

Figure S10. Snapshots of a) $ALE_{6.6}$ and b) $ALE-DME_{6.6}$ electrolyte structures in MD simulation.

Figure S11. Structures of the most probably inner solvation shells of a) $ALE_{6.6}$ and b) ALE-DME_{6.6} electrolytes from MD simulation.

In ALE-based electrolytes, the solvent molecules are outnumbered by Li⁺ and/or TFSI⁻ susceptible to solvation so that ionic species such as contact ion pairs (CIPs) and ionic aggregates (AGGs) co-exist in the highly concentrated solution. In Figure S11a, typical CIP and AGG species are sharing the one or two anions of TFSI- in ALE_{6.6} electrolyte considering the participation of DMSO and H₂O. As elucidated in previous work, we hypnotized the formula of Li⁺-solvated DMSO/H₂O complexes and TFSI⁻ anions as $Li^{+}(DMSO)_{a}(H_{2}O)_{b}(TFSI^{-})_{c}$ with a + b + c = 4 according to CIP and AGG formation.^[1] The corresponding results delivered the proof of solvation affinity and structure stability among LiTFSI and eutectic mixtures of DMSO/H2O. Furthermore, the DME regulator introduced a CIP difference as CP1 (e.g., Li+-solvated with two DMSO, one H₂O, and TFSI⁻) and CP₂ (e.g., Li⁺-solvated with one DME, two H₂O, and TFSI⁻) (Figure S11b). This regulation agent (DME) shows the ability to weaken the solvation ability of the two oxygen atoms or ethoxy groups, promoting an increased number of TFSI- solvating structures (e.g., CIPs). These results above are evidential to combine Raman, FTIR, MD, and electrochemical experimental consequence, which generally provides support from molecular views.

Figure S12. Raman spectrum of $ALE_{6.6}$ and ALE-based electrolytes in the range of $100-1400 \text{ cm}^{-1}$.

Figure S13. Integrated Raman spectrum of the rest ALE-based electrolytes in the range of 730–760 cm⁻¹.

Figure S14. Integrated FTIR spectrum of the rest ALE-based electrolytes in the range of 2900–4000 cm⁻¹.

Figure S15. Contact angle measurements of the rest ALE-based electrolytes.

Figure S16. Flammability tests of $ALE_{6.6}$ and ALE-based electrolytes.

Figure S17. Ionic conductivity of $ALE_{6.6}$ and ALE-based electrolytes at a) room temperature (RT) and b) -20 °C.

Figure S18. A) DSC spectra of ALE-DMC_{6.6} and ALE-DEC_{6.6}. b) GCD profiles of ALE-DME_{6.6} with different current densities at -20 °C. c) Nyquist plots of ALE_{6.6} and ALE-DME_{6.6} at -20 °C.

Figure S19. a) CV curves at 10 mV s⁻¹ b) GCD profiles at 0.1 A g⁻¹ of ALE-DMC_{6.6} and ALE-DEC_{6.6} at -20 °C.

Table S3. The comparison of capacitance, cyclability, and capacity retention after cycling reported for SCs using different electrodes and electrolytes and operating at different temperatures.

Electrolytes	Electrodes	T (%C)	Capacitance	Cycles number	Capacitance	Ref.
		(°C)	(F g ⁻)	(II)	Retention	
ALE-DME _{6.6}	ASAC-30	25	66.2	20000	~80.0%	
			(0.5 A g^{-1})	(4 A g^{-1})		This
		-20	51.6	8000	80.0%	work
			(0.1 A g^{-1})	(1 A g^{-1})		
ALE _{6.6}	ASAC-30	25	58.0	20000	60.0%	This
			(0.5 A g^{-1})	(4 A g^{-1})		work
20m LiTFSI-H ₂ O	Petal- derived	25	50.0	5000	84.0%	[7]
			(0.5 A g^{-1})	(2 A g^{-1})		
	porous carbon	-10	34.0	5000	38.0%	
			(0.5 A g^{-1})	(2 A g^{-1})		
5m LiTFSI- H ₂ O/CH ₃ CN	Activated carbon	25	27.0	14000	81.0%	[8]
			(1 A g^{-1})	(6 A g^{-1})		
		-30	21.8	· · · ·		
			(1 A g^{-1})			
(NaClO ₄) _{1.7} - (H ₂ O) _{4.7} /(CH ₃ CN) ₃	Activated carbon	20	31.8			[9]
			(20 mV s^{-1})			
		-50	27.5	ca. 7000	91.0%	
			(20 mV s^{-1})	(2 A g^{-1})		
3.5m Mg(ClO ₄) ₂ hydrated eutectic	Activated carbon	25	24.6	10000	92.6%	[10]
			(1 A g^{-1})	(4 A g^{-1})		
		-40	18.6	6000	ca. 100%	
			(1 A g^{-1})	(4 A g^{-1})		
3m LiTFSI	Activated carbon		106.0	10000		
sulfolane/H ₂ O		25	$(0.5 \ 1 \ A \ g^{-1})$	(10 A g^{-1})	93.0%	

References

[1] X. Lu, R.-J. Jiménez-Riobóo, D. Leech, M.-C. Gutiérrez, M.-L. Ferrer, Francisco del Monte. Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from –35 to +65 °C. *ACS Appl. Mater. Interfaces* **2020**, 12, 26, 29181–29193.

[2] H. J. Liang, Z.Y. Gu, X. X. Zhao, J.Z. Guo, J. L. Yang, W.H. Li, B. Li, Z. M. Liu, W.L. Li, X. L. Wu. Ether-based electrolyte chemistry towards high-voltage and longlife Na-ion full batteries. *Angew. Chem. Int. Ed.* **2021**, 60, 2–12.

[3] B. G. Johnson, P. M. W. Gill, J. A. People. The performance of a family of density functional methods. *J. Chem. Phys.* **1993**, 98, 5612-5626.

[4] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. *Phys. Rev. B* **1992**,46, 6671.

[5] J.P. Perdew, K. Burker, Y. Wang. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. *Phys. Rev. B* **1996**, 54, 16533–16539.

[6] J.P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron gas correlation energy. *Phys. Rev. B* **1992**, 45, 13244.

[7] C. Naresh, N.C. Osti, A. Gallegos, B. Dyatkin, J. Wu, Y. Gogotsi, E. Mamontov Mixed ionic liquid improves electrolyte dynamics in supercapacitors. *J. Phys. Chem. C* **2018**, 122, 10476-10481.

[8] Q. Dou, S. Lei, D.-.W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi, X. Yan. Safe and high-rate supercapacitors based on an "Acetonitrile/Water in Salt" hybrid electrolyte. *Energy Environ. Sci.* **2018**, 11, 3212-3219.

[9] Y. Sun, Y. Wang, L. Liu, B. Liu, Q. Zhang, D. Wu, H. Zhang, X. Yan. Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-insalt electrolyte for low-temperature supercapacitors. *J. Mater. Chem. A* **2020**, 8, 17998-11685.

[10] M. Zhong, Q.F. Tang, Y.W. Zhu, X.Y. Chen, Z.J. Zhang. An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. *J. Power Sources* **2020**, 452, 227847.

[11] X., Cheng, J., Yuan, J., Hu, S., Chen, H., Yan, W., Yang, W., Li, Y., Dai. 2.5 V high-performance aqueous and semi-solid-state symmetric supercapacitors enabled by 3 m sulfolane-saturated aqueous electrolytes. *Energy Technol.* **2022**, 2200157.