Supporting information

Hierarchical Mesoporous Selenium@Bimetallic Selenides Quadrilateral Nanosheets Array for Advanced Flexible Asymmetric Supercapacitor

Yan Zhao ^{a, c}, Sichao Wang ^c, Fei Ye ^b, Wenjie Liu ^c, Jiabiao Lian ^c, Guochun Li ^c, Huanting Wang ^d, Linfeng Hu *^b, Limin Wu *^{a, e}

^a College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot,
010021 China

^b School of Materials Science and Engineering, Southeast University Nanjing, 211189 China

^c Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 China

^d Department of Chemical Engineering, Monash University, Victoria, 3800, Australia

^e Department of Materials Science, Fudan University, Shanghai, 200433, China

Figure S1. (a) The XRD patterns of Se@CoSe₂ and Se@(NiCo)Se₂ range from 26° to 40°. (b) The lattice parameter of Se@CoSe₂@Se and Se@(NiCo)Se₂.

Figure S2. (a) Ni 2p, (b) C 1s, and (c) N 1s XPS spectra of Se@(NiCo)Se₂. (d) Zn 2p, (e) C 1s, and (f) N 1s XPS spectra of Se@(ZnCo)Se₂. (g) C 1s, and (h) N 1s XPS spectra of Se@CoSe₂.

Figure S3. XRD pattern of the post-processed (NiCo)Se₂/CC sample.

Figure S4. (a) CV curves, (b) Log (Peak Current) vs. log (Scan Rate) plots of $Se@(NiCo)Se_2/CC$, (c) Illustration of the possible capacity contribution ratios at different scan rates, and (d) GCD curves of the $Se@(NiCo)Se_2/CC$ electrode.

Figure S5. EIS curves of the Se@(NiCo)Se₂/CC electrode before and after cycling at a current density of 20 A g^{-1} recorded at open-circuit potentials.

Figure S6. Photograph of the closed reaction equipment in a three-electrode system.

Figure S7. XRD pattern of the Se@(NiCo)Se₂ electrode after cycling test.

Figure S8. SEM images of the Se@(NiCo)Se $_2$ /CC electrode after cycling test.

Figure S9. (a) CV, (b)GCD, and (c) Specific capacitance of AC electrode. (d) CV curves (scan rate of 30 mV s^{-1}) of AC and Se@(NiCo)Se₂/CC electrodes.

Electrode materials	C_s (F g ⁻¹)	Potential windows (V)	Electrolyte	Rate capability	Ref.
CoSe ₂ /rGO	219 (0.5 A g ⁻¹)	-0.2-0.45	ЗМ КОН	0.5-10 A g ⁻¹ 73 %	42
CoSe ₂ /NC	1236.34 (1 A g ⁻¹)	0-0.35	6 М КОН	1-20 A g ⁻¹ 61.2 %	43
Porous CoSe ₂ /NF	713.2 (1 mA cm ⁻²)	-0.1-0.4	3 М КОН	1-20 mA cm ⁻² 75.1 %	44
2D CoSNC	360.1 (1.5 A g ⁻¹)	0-0.6	2 M KOH	1-30 A g ⁻¹ 56.8 %	17
Cu-TCPP@PPy	500 (1 A g ⁻¹)	-0.2-0.7	2 M KOH	1-10 A g ⁻¹ 57 %	45
Co-TCPP Nanosheet/GO	510 (5 A g ⁻¹)	-0.1-0.4	6 M KOH	5-20 A g ⁻¹ 74.5 %	16
H-NiCoSe ₂ sub- microspheres	750 (3 A g ⁻¹)	-0.2-0.4	6 М КОН	44.0 % 3-30 A g ⁻¹	46
Ni _{0.6} Co _{0.4} Se ₂	1339.1 (1 A g ⁻¹)	0-0.45	6 М КОН	1-20 A g ⁻¹ 77.7 %	9
Se@(NiCo)Se ₂ /CC	1920 (2 A g ⁻¹)	0-0.45	ЗМ КОН	2-40 A g ⁻¹ 55.5 %	This work

capability of the Se@(NiCo)Se₂ electrode and the related work in literature.

Table S1. The comparison of the specific capacitance, potential windows, electrolyte, and rate

rGO: reduced graphene oxide, NC: N-doped carbon, NF: nickel foam, CoSNC: $CoS_{1.097}$ nanoparticles and nitrogen-doped carbon, PPy: polypyrrole, GO: graphene oxide, H: Hollow, CC: carbon cloth

Hybrid supercapacitors	Energy density Wh kg ⁻¹	Power density W kg ⁻¹	Reference
Ni _{0.6} Co _{0.4} Se ₂ //BNPC	14.5	16300	9
CoSe ₂ /NC-NF//AC	40.9	980	43
H-NiCoSe ₂ //AC	25.5	3750	46
NiCo-MOF//AC	20.9	800	60
Ni-MOF//AC	31.5	800	61
CoSe ₂ nanoarrays//carboon nanowall	32.2	1914.7	62
Se@(NiCo)Se ₂ //AC	49.4	787.3	This work

Table S2. Comparison of energy and power densities of our Se@(NiCo)Se2//AC asymmetric

supercapacitor with the related work in literature.

AC: activated carbon, BNPC: boron and nitrogen co-doped porous carbon foam, NC: N-doped carbon, NF: nickel foam.