## **Supplementary Material**

## Doping and Heterojunction Strategies for Constructing Vdoped Ni<sub>3</sub>FeN/Ni Anchored on N-doped Graphene Tubes as Efficient Overall Water Splitting Electrocatalyst

Guanying Song<sup>a</sup>, Siqi Luo<sup>a</sup>, Qing Zhou<sup>a</sup>, Jiachen Zou<sup>a</sup>, ,Yusheng Lin<sup>a</sup>, Lei Wang<sup>b</sup>, Guicun Li<sup>a</sup>, Alan Meng<sup>\*b</sup> Zhenjiang Li<sup>\*a</sup>

<sup>a</sup>College of Electromechanical Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, P. R. China.

<sup>b</sup> Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.

\* Corresponding author. Tel.: +86 532 88959506; fax: +86 532 88959506.

E-mail address: <a href="mailto:alanmengqust@163.com">alanmengqust@163.com</a> (A. L. Meng);

zhenjiangli@qust.edu.cn (Z. J. Li)



Fig. S1. (a, b) SEM image, (the inset in (a) is the diameter distribution of the N-GTs), (c) TEM image, (d) Raman spectra of self-synthesized N-GTs.



**Fig. S2.** (a) XRD pattern, (b) SEM image of V-doping Ni-Fe precursor prepared by hydrothermal method.



Fig. S3. XRD of 25-V-Ni<sub>3</sub>FeN/Ni@N-GTs.



Fig. S4. (a) SEM image, (b) HRTEM image of V-Ni<sub>3</sub>FeN/Ni@N-GTs.



Fig. S5. Electrocatalysis of the HER in alkaline media: a) LSV curves b) Corresponding overpotentials at the current density of 10 mA cm<sup>-2</sup> and 100 mA cm<sup>-2</sup> c) Tafel plots of 5-V-Ni<sub>3</sub>FeN/Ni@N-GTs, 10-V-Ni<sub>3</sub>FeN/Ni@N-GTs, 15-V-Ni<sub>3</sub>FeN/Ni@N-GTs, 20-V-Ni<sub>3</sub>FeN/Ni@N-GTs and 25-V-Ni<sub>3</sub>FeN/Ni@N-GTs.



Fig. S6. LSV curves of HER normalized by (a) the electrochemical doublelayer capacitance C<sub>dl</sub> and (b) the electrochemical active surface area (ECSA).



**Fig. S7.** CVs performed at various scan rates in the region of -0.90 V to -0.8 V (vs. Hg/HgO) for (a) V-Ni<sub>3</sub>FeN/Ni @N-GTs, (b) Ni<sub>3</sub>FeN/Ni@N-GTs, (c)Ni<sub>3</sub>FeN@N-GTs.



Fig. S8. SEM images of the V-Ni<sub>3</sub>FeN/Ni@N-GTs before (a) and after (b) HER stability testing.



Fig. S9. The XPS spectra of V-Ni<sub>3</sub>FeN/Ni@N-GTs before and after HER test.



Fig. S10. Electrocatalysis of the OER in alkaline media: a) LSV curves b) Corresponding overpotentials at the current density of 10 mA cm<sup>-2</sup> and 100 mA cm<sup>-2</sup> c) Tafel plots of 5-V-Ni<sub>3</sub>FeN/Ni@N-GTs, 10-V-Ni<sub>3</sub>FeN/Ni@N-GTs, 15-V-Ni<sub>3</sub>FeN/Ni@N-GTs, 20-V-Ni<sub>3</sub>FeN/Ni@N-GTs and 25-V-Ni<sub>3</sub>FeN/Ni@N-GTs.



Fig. S11. LSV curves of OER normalized by a) the electrochemical double-layer capacitance Cdl and b) the electrochemical active surface area ECSA.



**Fig. S12.** CVs performed at various scan rates in the region of 0.25 V to 0.35 V (vs. Hg/HgO) for (a) V-Ni<sub>3</sub>FeN/Ni@N-GTs, (b) Ni<sub>3</sub>FeN/Ni@N-GTs, (c)Ni<sub>3</sub>FeN@N-GTs.



Fig. S13. SEM images of the V-Ni<sub>3</sub>FeN/Ni@N-GTs before (a) and after (b) OER stability testing.



Fig. S14. The XPS spectra of V-Ni<sub>3</sub>FeN/Ni@N-GTs before and after OER test.



**Fig. S15.** The optimized model structure diagram of (a) Ni<sub>3</sub>FeN/Ni and (b) V-Ni<sub>3</sub>FeN/Ni.



**Fig. S16.** Structures and formation energies ( $E_{tot}$ ) of (a) V substitute Fe, (b) V substitute Ni, (c) V substitute Fe and Ni in the V-Ni<sub>3</sub>FeN/Ni material.



Fig. S17. Density of states on (a) Ni, (b) Ni<sub>3</sub>FeN, (c) Ni<sub>3</sub>FeN/Ni and (d) V-Ni<sub>3</sub>FeN/Ni.



Fig. S18. Side view of schematic structural representations for water dissociation and hydrogen adsorption at Ni site in the pristine Ni<sub>3</sub>FeN/Ni (a) and V-Ni<sub>3</sub>FeN/Ni (b).



Fig. S19. Free energy diagrams for alkaline HER on V-Ni<sub>3</sub>FeN/Ni@N-GTs and Ni<sub>3</sub>FeN/Ni@N-GTs.



**Fig. S20** Side view of schematic structural representations for hydrogen adsorption at Ni and Fe sites in the pristine Ni<sub>3</sub>FeN/Ni (a-b); Side view of schematic structural representations for hydrogen adsorption at Ni, Fe and V sites in V-Ni<sub>3</sub>FeN/Ni (c-e).



**Fig. S21.** Side view of schematic structural representations for oxygen adsorption at Ni and Fe sites in the pristine Ni<sub>3</sub>FeN/Ni.



**Fig. S22.** Side view of schematic structural representations for oxygen adsorption at Ni, Fe and V sites in V-Ni<sub>3</sub>FeN/Ni.



Fig. S23. The work function values of (a) Ni and (b) V-Ni<sub>3</sub>FeN.

|                                                                  | (10 mA cm <sup>-2</sup> ) | (mV dec <sup>-1</sup> ) | Electrolyte | Ref       |
|------------------------------------------------------------------|---------------------------|-------------------------|-------------|-----------|
| V-Ni <sub>3</sub> FeN/Ni@N-GTs                                   | 66                        | 88                      | 1.0 M KOH   | This work |
| NiCo                                                             | 86                        | 62.1                    | 1.0 M KOH   | [1]       |
| Ni <sub>3</sub> S <sub>2</sub> @NGCLs/NF                         | 134                       | 84                      | 1.0 M KOH   | [2]       |
| Ni <sub>2</sub> P-Ni <sub>12</sub> P <sub>5</sub>                | 76                        | 68                      | 1.0 M KOH   | [3]       |
| d-Ni <sub>3</sub> FeN/Ni <sub>3</sub> Fe                         | 125                       | 98                      | 1.0 M KOH   | [4]       |
| C0Ni2S4/WS2/C09S8                                                | 70                        | 112                     | 1.0 M KOH   | [5]       |
| Fe-Ni <sub>5</sub> P₄/NiFeOH                                     | 197                       | 94                      | 1.0 M KOH   | [6]       |
| Mo-<br>NiCo <sub>2</sub> O <sub>4</sub> /Co <sub>5.47</sub> N/NF | 81                        | 116.7                   | 1.0 M KOH   | [7]       |
| CoO <sub>x</sub> /CoN <sub>y</sub> @CN <sub>z</sub>              | 261                       | 84                      | 1.0 M KOH   | [8]       |
| Ni <sub>2</sub> P/Ni <sub>3</sub> S <sub>2</sub>                 | 79                        | 50.4                    | 1.0 M KOH   | [9]       |
| Ni@NC6-600                                                       | 181                       | 119                     | 1.0 M KOH   | [10]      |

 Tab. S1. HER performance of different catalysts in alkaline solution (1M KOH).

 Catalyst

 Overnotential / mV

 Tafel slop

 Electrolyte

| Catalyst                                 | Overpotential / mV<br>(10 mA cm <sup>-2</sup> ) | Tafel slop<br>(mV dec <sup>-1</sup> ) | Electrolyte | Ref       |
|------------------------------------------|-------------------------------------------------|---------------------------------------|-------------|-----------|
| V-Ni <sub>3</sub> FeN/Ni@N-GTs           | 252                                             | 29                                    | 1.0 M KOH   | This work |
| Ni <sub>3</sub> S <sub>2</sub> @NGCLs/NF | 271                                             | 99                                    | 1.0 M KOH   | [2]       |
| NiCo2O4@CoS/NF                           | 290                                             | 92                                    | 0.1 M KOH   | [11]      |
| NiCoFe-MOF-74                            | 273                                             | 63                                    | 0.1 M KOH   | [12]      |
| NiCoPO/NC                                | 300                                             | 94                                    | 1.0 M KOH   | [13]      |
| CoNS/C                                   | 345                                             | 83.3                                  | 1.0 M KOH   | [14]      |
| NiMoNS                                   | 260                                             | 54.7                                  | 1.0 M KOH   | [15]      |
| Ni/NiFe2O4-CNTs                          | 284                                             | 46.3                                  | 1.0 M KOH   | [16]      |
| Fe@BIF-73-NS                             | 291                                             | 37.9                                  | 1.0 M KOH   | [17]      |
| V-NiCo <sub>2</sub> O <sub>4</sub>       | 340                                             | 71.9                                  | 1.0 M KOH   | [18]      |
| $(Co_{1-x}Fe_x)_9S_8$                    | 268                                             | 63.9                                  | 1.0 M KOH   | [19]      |

Tab. S2.OER performance of different catalysts in alkaline solution (1M KOH).

|                                                                                                                            | <b>Overpotential</b> /    |             |      |  |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------|--|
| Catalyst                                                                                                                   | mV                        | Electrolyte | Ref  |  |
|                                                                                                                            | (10 mA cm <sup>-2</sup> ) |             |      |  |
| V Nº E-N/Nº ON CT-IIV Nº E-N/Nº ON CT-                                                                                     | 1.55                      | 1.0 M       | This |  |
| V-INI3FEIN/INI@IN-GIS  V-INI3FEIN/INI@IN-GIS                                                                               | 1.55                      | КОН         | work |  |
|                                                                                                                            | 150                       | 1.0 M       | [20] |  |
| $CuS(U)C09S_8/IN13S_2  CuS(U)C09S_8/IN13S_2$                                                                               | 1.50                      | КОН         | [20] |  |
| NIEA I DU/NI(OU) IINIEA I DU/NI(OU)                                                                                        | 1.60                      | 1.0 M       | [21] |  |
| $\mathbf{NIFe} = \mathbf{LDH} / \mathbf{NI} (\mathbf{OH})_2    \mathbf{NIFe} = \mathbf{LDH} / \mathbf{NI} (\mathbf{OH})_2$ | 1.00                      | КОН         |      |  |
| Ma NiCa O /Ca N/NEIIMa NiCa O /Ca N/NE                                                                                     | 156                       | 1.0 M       | [7]  |  |
| M0-MC02O4/C05.47M/MF  M0-MC02O4/C05.47M/MF                                                                                 | 1.30                      | КОН         | [/]  |  |
| Cool Con @Cn IICool /Con @Cn                                                                                               | 1 57                      | 1.0 M       | [9]  |  |
|                                                                                                                            | 1.37                      | КОН         | ႞ႄ   |  |
| NiCo.O. @NiS    NiCo.O. @NiS                                                                                               | 1.65                      | 1.0 M       | [22] |  |
|                                                                                                                            | 1.05                      | КОН         | [22] |  |
| d Ni-FoN/Ni-Folld Ni-FoN/Ni-Fo                                                                                             | 1.61                      | 1.0 M       | [4]  |  |
| u-11131 e11/11131 e  u-11131 e11/11131 e                                                                                   | 1.01                      | КОН         | [4]  |  |
| Ni <sub>3</sub> S <sub>2</sub> /Cu-NiCo LDH/NF   Ni <sub>3</sub> S <sub>2</sub> /Cu-NiCo                                   | 1 58                      | 1.0 M       | [23] |  |
| LDH/NF                                                                                                                     | 1.30                      | КОН         |      |  |
| FaCaD @NDDC  FaCaD @NDDC                                                                                                   | 16                        | 1.0 M       | [24] |  |
|                                                                                                                            | 1.0                       | КОН         |      |  |
| D EA N@NC NSA/IEIID EA N@NC NSA/IE                                                                                         | 1.61                      | 1.0 M       | [25] |  |
| 1 - F C314 (W14C 1455/1F    I - F C314 (W14C 1455/1F                                                                       | 1.01                      | КОН         |      |  |
| NiEcOPIINiEcOP                                                                                                             | 1 57                      | 1.0 M       | [26] |  |
|                                                                                                                            | 1.37                      | КОН         |      |  |

| Tab.  | <b>S3.</b> | Overall | water       | split | ing | performanc | e of | different | catalysts | in | alkaline |
|-------|------------|---------|-------------|-------|-----|------------|------|-----------|-----------|----|----------|
| solut | ion (      | 1 M KO  | <b>H</b> ). |       |     |            |      |           |           |    |          |

References

- [1] J. Zhou, L. Yu, Q. Zhou, C. Huang, Y. Zhang, B. Yu, Y. Yu, Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting, Appl. Catal. B: Environ. 288 (2021) 120002.
- [2] B. Li, Z. Li, Q. Pang, J. Zhang, Core/shell cable-like Ni<sub>3</sub>S<sub>2</sub> nanowires/Ndoped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting, Chem. Eng. J. 401 (2020) 126045.
- [3] Z. Wang, S. Wang, L. Ma, Y. Guo, J. Sun, N. Zhang, R. Jiang, Water-Induced Formation of Ni<sub>2</sub>P–Ni<sub>12</sub>P<sub>5</sub> Interfaces with Superior Electrocatalytic Activity toward Hydrogen Evolution Reaction, Small. 17 (2021) 2006770.
- [4] Z. Li, H. Jang, D. Qin, X. Jiang, X. Ji, M.G. Kim, L. Zhang, X. Liu, J. Cho, Alloy-strain-output induced lattice dislocation in Ni<sub>3</sub>FeN/Ni<sub>3</sub>Fe ultrathin nanosheets for highly efficient overall water splitting, J. Mater. Chem. A. 9 (2021) 4036-4043.
- [5] M. Ma, J. Xu, H. Wang, X. Zhang, S. Hu, W. Zhou, H. Liu, Multi-interfacial engineering of hierarchical CoNi<sub>2</sub>S<sub>4</sub>/WS<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> hybrid frameworks for robust all-pH electrocatalytic hydrogen evolution, Appl. Catal. B: Environ. 297 (2021) 120455.
- [6] C. Li, J. Zhao, L. Xie, J. Wu, G. Li, Fe doping and oxygen vacancy modulated Fe-Ni<sub>5</sub>P<sub>4</sub>/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting, Appl. Catal. B: Environ. 291 (2021) 119987.
- [7] W. Liu, L. Yu, R. Yin, X. Xu, J. Feng, X. Jiang, D. Zheng, X. Gao, X. Gao, W. Que, P. Ruan, F. Wu, W. Shi, X. Cao, Non-3d Metal Modulation of a 2D Ni–Co Heterostructure Array as Multifunctional Electrocatalyst for Portable Overall Water Splitting, Small. 16 (2020) 1906775.
- [8] J. Liu, C. Wang, H. Sun, H. Wang, F. Rong, L. He, Y. Lou, S. Zhang, Z. Zhang, M. Du, CoO<sub>x</sub>/CoN<sub>y</sub> nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery, Appl. Catal. B: Environ. 279 (2020) 119407.

- [9] H. Su, S. Song, S. Li, Y. Gao, L. Ge, W. Song, T. Ma, J. Liu, High-valent bimetal Ni<sub>3</sub>S<sub>2</sub>/Co<sub>3</sub>S<sub>4</sub> induced by Cu doping for bifunctional electrocatalytic water splitting, Appl. Catal. B: Environ. 293 (2021) 120225.
- [10] N. Cheng, N. Wang, L. Ren, G. Casillas-Garcia, N. Liu, Y. Liu, X. Xu, W. Hao, S.X. Dou, Y. Du, In-situ grafting of N-doped carbon nanotubes with Ni encapsulation onto MOF-derived hierarchical hybrids for efficient electrocatalytic hydrogen evolution, Carbon. 163 (2020) 178-185.
- [11] S. Adhikari, Y. Kwon, D.-H. Kim, Three-dimensional core-shell structured NiCo<sub>2</sub>O<sub>4</sub>@CoS/Ni-Foam electrocatalyst for oxygen evolution reaction and electrocatalytic oxidation of urea, Chem. Eng. J. 402 (2020) 126192.
- [12] H. Zheng, Y. Wang, P. Zhang, F. Ma, P. Gao, W. Guo, H. Qin, X. Liu, H. Xiao, Multiple effects driven by AC magnetic field for enhanced electrocatalytic oxygen evolution in alkaline electrolyte, Chem. Eng. J. 426 (2021) 130785.
- [13] C. Wang, W. Chen, D. Yuan, S. Qian, D. Cai, J. Jiang, S. Zhang, Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions, Nano Energy. 69 (2020) 104453.
- [14] Y. Wang, S. Zhang, X. Meng, T. Wang, Y. Feng, W. Zhang, Y. He, Y. Huang, N. Yang, Z.-F. Ma, Surface Tuning to Promote the Electrocatalysis for Oxygen Evolution Reaction: From Metal-Free to Cobalt-Based Carbon Electrocatalysts, ACS Appl. Mater. Interfaces. 13 (2021) 503-513.
- [15] Y. Liu, P. Liu, Y. Men, Y. Li, C. Peng, S. Xi, Y. Pan, Incorporating MoO<sub>3</sub> Patches into a Ni Oxyhydroxide Nanosheet Boosts the Electrocatalytic Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces. 13 (2021) 26064-26073.
- [16] X. Yu, G. Chen, Y. Wang, J. Liu, K. Pei, Y. Zhao, W. You, L. Wang, J. Zhang, L. Xing, Hierarchical coupling effect in hollow Ni/NiFe<sub>2</sub>O<sub>4</sub>-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis, Nano Res. 13 (2020) 437-446.

- [17] T. Wen, M. Liu, S. Chen, Q. Li, Y. Du, T. Zhou, C. Ritchie, J. Zhang, 2D Boron Imidazolate Framework Nanosheets with Electrocatalytic Applications for Oxygen Evolution and Carbon Dioxide Reduction Reaction, Small. 16 (2020) 1907669.
- [18] X. Wang, Y. Zhou, J. Luo, F. Sun, J. Zhang, Synthesis of V-doped urchinlike NiCo<sub>2</sub>O<sub>4</sub> with rich oxygen vacancies for electrocatalytic oxygen evolution reactions, Electrochim. Acta. 406 (2022) 139800.
- [19] Y. Wang, Z. Meng, X. Gong, C. Jiang, C. Zhang, J. Xu, Y. Li, J. Bao, Y. Cui, H. Wang, Y. Zeng, X. Hu, S. Yu, H. Tian, Enhancing stability of Co<sub>9</sub>S<sub>8</sub> by iron incorporation for oxygen evolution reaction and supercapacitor electrodes, Chem. Eng. J. 431 (2022) 133980.
- [20] F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang, S.J.J.o.M.C.A. Yang, Bifunctional CdS@ Co<sub>9</sub>S<sub>8</sub>/Ni<sub>3</sub>S<sub>2</sub> catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting, J. Mater. Chem. A. 8 (2020) 3083-3096.
- [21] N. Gultom, H. Abdullah, C. Hsu, D. Kuo, Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide, Chem. Eng. J. 419 (2021) 129608.
- [22] L. Feng, W. Lu, J. Liu, D. Li, L. Hu, C. Xu, Guarding active sites and electron transfer engineering of core-shell nanosheet as robust bifunctional applications for overall water splitting and capacitors, Electrochim. Acta. 331 (2020) 135372.
- [23] L. Jia, G. Du, D. Han, Y. Hao, W. Zhao, Y. Fan, Q. Su, S. Ding, B. Xu, Ni<sub>3</sub>S<sub>2</sub>/Cu–NiCo LDH heterostructure nanosheet arrays on Ni foam for electrocatalytic overall water splitting, J. Mater. Chem. A. 9 (2021) 27639-27650.
- [24] Y. Wang, Z. Yang, D. Yang, L. Zhao, X. Shi, G. Yang, B. Han, FeCoP<sub>2</sub> Nanoparticles Embedded in N and P Co-doped Hierarchically Porous Carbon for Efficient Electrocatalytic Water Splitting, ACS Appl. Mater.

Interfaces. 13 (2021) 8832-8843.

- [25] G. Li, J. Yu, W. Yu, L. Yang, X. Zhang, X. Liu, H. Liu, W. Zhou, Phosphorus-Doped Iron Nitride Nanoparticles Encapsulated by Nitrogen-Doped Carbon Nanosheets on Iron Foam In Situ Derived fromSaccharomycetes Cerevisiaefor Electrocatalytic Overall Water Splitting, Small. 16 (2020) 2001980.
- [26] Y. Xie, B. Zhao, K. Tang, W. Qin, C. Tan, J. Yao, Y. Li, L. Jiang, X. Wang,
  Y. Sun, In-situ phase transition induced nanoheterostructure for overall water splitting, Chem. Eng. J. 409 (2021) 128156.