Supporting information

Recyclable CFRP with Extremely High T_g : Hydrothermal Recyclability in Pure Water and Upcycling of the Recyclates in New Composite Preparation

Starting materials	Types of reversible	$T_{\rm g} [^{\circ} { m C}]$	Recycling conditions	Ref.	
	bonds				
DGEBA, glutaric anhydride, ethylenediamine	Hydroxyl-ester	65.9 Water, 180 °C, 5 h		1	
Epoxidized menthane diamine, adipic acid	Hydroxyl-ester	72.1 ~ 86.4	Ethanolamine, 60 °C, 30 min	2	
Epoxidized soybean oil, camphoric acid	Hydroxyl-ester	$40 \sim 48$	Ethylene glycol, 190 °C, 20 h	3	
DGEBA, hexahydro-4-methylphthalic	Hydroxyl-ester	157	0.30 M TBD-EG/NMP (10/90)	4	
anhydride	Hydroxyr ester	157	solution, 170 °C, 1.5 h		
Tung oil-based triglycidyl ester, menthane	Undrowy octor	60 5 82 6	Ethylene alveel 00 °C 1 h	5	
diamine	Hydroxy1-ester	60.3 ~ 82.6	Ethylene glycol, 90°C, 1 h	5	

 Table S1. Summary of the recyclable CFRP based on dynamic covalent bonds.

1

0	
7	
nol 8	
9	
,	
10	
10	
11	
12	
12	
13	
, ,	

_

	$T_{\rm g}$	Tensile strength	Tensile modulus	Elongation at break	Impact strength
Sample	[°C]	[MPa]	[GPa]	[%]	[kJ m ⁻²]
TN-0.05TEOA	224.1	65.9 ± 5.3	1.70 ± 0.08	4.0 ± 0.4	9.2 ± 2.3
TN-0.1TEOA	203.5	75.0 ± 4.1	1.76 ± 0.08	6.0 ± 0.2	9.1 ± 1.1
TN-0.15TEOA	196.0	-		-	-
TN-2E4MI	276.9	79.4 ± 4.0	1.87 ± 0.10	2.6 ± 0.1	10.3 ± 2.0
DN-2E4MI	178.2	59.0 ± 4.6	1.32 ± 0.07	3.0 ± 0.3	7.2 ± 0.8

Table S2. Summary of $T_{\rm g}$ and mechanical properties of different cured samples

Table S3. Tensile properties of prepared CFRP with three layers of carbon fibric mat

OFDD			Tensile strength
CFRP	Polymer matrix	Type of carbon fiber	[MPa]
TN-0.1TEOA-CF	TN-0.1TEOA	Virgin CF	502 ± 25
TN-2E4MI-CF	TN-2E4MI	Virgin CF	558 ± 67
DN-2E4MI-CF	DN-2E4MI	Virgin CF	421 ±28
DN-10rEP-CF	DN-10rEP	Virgin CF	384 ± 30
DN-20rEP-CF	DN-20rEP	Virgin CF	374 ± 13
DN-30rEP-CF	DN-30rEP	Virgin CF	383 ± 35
TN-0.1TEOA-CF	TN-0.1TEOA	Recycled CF	437 ± 37
DN-2E4MI-CF	DN-2E4MI	Recycled CF	394 ± 67
DN-20rEP-CF	DN-20rEP	Recycled CF	300 ± 27

Samples -	DER 331		rEP		NMA		2E4MI
	Epoxy [mmol]	Mass [g]	Epoxy [mmol]	Mass [g]	Anhydride [mmol]	Mass [g]	Mass [g]
DN-2E4MI	5.3	1	0	0	5.3	0.94	0.06
DN-10rEP	4.8	0.9	0.2	0.1	5.0	0.89	0.06
DN-20rEP	4.2	0.8	0.4	0.2	4.6	0.81	0.05
DN-30rEP	3.7	0.7	0.6	0.3	4.3	0.77	0.05

Table S4. Formulations of new epoxy curing systems with rEP

Table S5. Summary of $T_{\rm g}$ and mechanical properties of cured epoxies resin with rEP

Sample [$T_{ m g}$	Tensile strength	Elongation at break	Impact strength
	[°C]	[MPa]	[%]	[kJ m ⁻²]
DN-2E4MI	178.2	59.0 ± 4.6	3.0 ± 0.3	7.2 ± 0.8
DN-10rEP	160.0	47.6 ± 9.7	3.5 ± 0.7	14.6 ± 3.0
DN-20rEP	150.1	32.8 ± 5.3	2.2 ± 0.8	11.0 ± 2.2
DN-30rEP	137.3	30.3 ± 6.5	2.1 ± 0.4	5.9 ± 1.3

Scheme S1. Schematic illustration for the preparation of CFRP.

Scheme S2. Schematic illustration of dynamic transesterification reaction (DTR).

Scheme S3. Schematic illustration of chemical medication of DMP and preparation of new epoxy with rEP.

Figure S1. Viscosity of epoxy mixtures as the function of temperature.

Figure S2. Stress relaxation behavior of TN-0.1TEOA, TN-2E4MI and DN-2E4MI at 200 °C.

Figure S3. TGA curves of the cured TN-TEOA samples. TGA was performed under nitrogen atmosphere with a heating rate of 10 K min⁻¹.

Figure S4. Impact strengths of TN-TEOAs, TN-2E4MI and DN-2E4MI.

Figure S5. Thermogravimetric derivative (DTG) curves of the TN-0.1TEOA composite and rCF.

Figure S7. Apparent viscosity of DMP and rEP that was determined by rheometer.

Figure S8. Apparent viscosity of epoxy resin mixture with rEP.

Figure S9. Exothermal curves of epoxy resin mixture with rEP as replacement for DER epoxy resin.

Figure S10. Storage modulus (E') of cured epoxies that use rEP to replace part of DER resin

Figure S11. Tensile and impact strength of cured epoxies with different contents of rEP.

Figure S12. FTIR spectra of DN-20rEP before and after the degradation in pure water at 200 °C for 5 hours.

Figure S13. SEM images of recycled carbon fiber collected from DN-10rEP-rCF after the degradation in pure water at 200 °C for 5 hours.

Reference

- T. Liu, C. Hao, L. Shao, W. Kuang, L. Cosimbescu, K. L. Simmons and J. Zhang, Macromol. Rapid Commun., 2021, 42, e2000458.
- 2. Y. Xu, S. Dai, L. Bi, J. Jiang, H. Zhang and Y. Chen, Chem. Eng. J., 2022, 429, 132518.
- 3. W. Zhang, J. Wu, L. Gao, B. Zhang, J. Jiang and J. Hu, Green Chem., 2021, 23, 2763-2772.
- X. Kuang, Y. Zhou, Q. Shi, T. Wang and H. J. Qi, ACS Sustain. Chem. Eng., 2018, 6, 9189-9197.
- Y. Xu, S. Dai, H. Zhang, L. Bi, J. Jiang and Y. Chen, ACS Sustain. Chem. Eng., 2021, 9, 16281-16290.
- 6. Y. Liu, G. Liu, Y. Li, Y. Weng and J. Zeng, ACS Sustain. Chem. Eng., 2021, 9, 4638-4647.
- P. Taynton, H. Ni, C. Zhu, K. Yu, S. Loob, Y. Jin, H. J. Qi and W. Zhang, *Adv. Mater.*, 2016, 28, 2904-2909.
- S. Wang, S. Q. Ma, Q. Li, X. W. Xu, B. B. Wang, W. C. Yuan, S. H. Zhou, S. S. You and J. Zhu, *Green Chem.*, 2019, 21, 1484-1497.
- A. R. de Luzuriaga, R. Martin, N. Markaide, A. Rekondo, G. Cabañero, J. Rodríguez and I. Odriozola, *Mater. Horiz.*, 2016, 3, 241-247.
- H. Si, L. Zhou, Y. Wu, L. Song, M. Kang, X. Zhao and M. Chen, *Compos. Part B Eng.*, 2020, **199**, 108278.
- S. Wang, X. Xing, X. Zhang, X. Wang and X. Jing, J. Mater. Chem. A, 2018, 6, 10868-10878.
- T. Hashimoto, H. Meiji, M. Urushisaki, T. Sakaguchi, K. Kawabe, C. Tsuchida and K. Kondo, J. Polym. Sci. Part A Polym. Chem., 2012, 50, 3674-3681.

W. C. Yuan, S. Q. Ma, S. Wang, Q. Li, B. B. Wang, X. W. Xu, K. F. Huang, J. Chen, S. S. You and J. Zhu, *Eur. Polym. J.*, 2019, **117**, 200-207.