Journal Name

ARTICLE

Supporting Information

This supporting information includes:

Table S1. Molar attenuation coefficients;

- Table S2. Comparison of electrochemical performance of iodine-based batteries;
- Table S3. Values of k calculated from UV-Vis spectroscopy and CA
- Fig. S1. The size distribution of I₂ solid particles;
- Fig. S2. I₂ passivation of 1 M KI + 7.5% ACN;
- Fig. S3. Zn dissolution and deposition in a $1M \text{ ZnI}_2$ electrolyte with and without ACN;
- Fig. S4. Charging and discharging curves of a Zn-I₂ flow battery with 1M ZnI₂ +1M KI at different current densities;
- Fig. S5. Charging and discharging curves of a Zn-I₂ flow battery with 1M ZnI₂ +1M KI +7.5% ACN at different current densities.

Table S1 Molar attenuation coefficients (in L·mol⁻¹·cm⁻¹) calibrated for different solutions in Fig. 3.

Materials	At 288 nm	At 352 nm
1M KI	1.50 x 10 ⁴	0.99 x 10 ⁴
1M KI +7.5% ACN	1.56 x 10 ⁴	1.04 x 10 ⁴
2M KI	1.58 x 10 ⁴	1.04 x 10 ⁴
2M KI +7.5% ACN	1.52 x 10 ⁴	1.04 x 10 ⁴

Table S2 Comparison of electrochemical performance of aqueous iodine-based batteries. For those using different electrolytes in the positive and negative sides, only the positive sides are tabulated.

Electrolyte composition	Current Density (mA/cm ²)	Energy Efficiency (%)	Cycles	Ref.
1M Znl ₂ + 7.5% ACN	100	60%	170	This work
6M KI + 6M I ₂	10	~80	70	13
2M KI + 1M ZnBr ₂ + 2M KCI	80	82	300	16
4M KI + 2M ZnBr ₂ + 2M KCI	80	80	300	
5M KI + 2.5M ZnBr ₂ + 1M KCI	80	80	1000	
6M KI + 3M ZnBr ₂	80	80	1000	
5M NH ₄ I + 2.5M NH ₄ CI	80	82	1100	17
$1M ZnI_2 + 1M NH_4Br$	40	85	100	18
6.5M NH ₄ I + 1.5M NH ₄ CI (total 6.5M I ⁻)	10	78	2500	
2.5M NH₄I + 1.25M NH₄CI (2.5M I ⁻)	20	88	1200	28
2.6M NH ₄ I ₃ (NH ₄ I+I ₂) + 3.9M NH ₄ CI (2.6 M I ₃ ⁻)	20	70	1500	
(Single flow) Solid I ₂ (cathode)	40	81	500	
6M KI + 3M ZnBr ₂	80	~77	500	20
7.5M KI + 3.75M ZnBr ₂	20	~80	100	29
3M KI + 1.5M ZnBr ₂ + 2M KCI	80	71	300	

Table S3. Values of k calculated from UV-Vis spectroscopy and CA with Eqs. 5 and 6, respectively

Method K in mol/(cm²-s)	UV	СА	
1M KI	1.2*10 ⁻⁶	6.3*10 ⁻⁷	
1M KI+5% EA	/	1.2*10-6	
1M KI+5% PC	/	1.1*10 ⁻⁶	
1M KI+5% THF	/	1.1*10-6	
1M KI+5% MeOH	/	5.8*10 ⁻⁷	
1M KI+5% ACN	/	1.2*10 ⁻⁷	
1MKI+7.5% ACN	2.1*10 ⁻⁶	1.3*10-6	
1M KI+10% ACN	/	1.2*10 ⁻⁷	
1M KI+50% ACN	/	3.3*10-7	
2M KI	5.1*10 ⁻⁶	2.2*10 ⁻⁶	
2MKI+7.5% ACN	3.1*10 ⁻⁵	3.6* 10-6	

Fig. S1 Size distribution of solid I_2 particles measured by optical microscopy.

Fig. S2. CV of 1 M KI + 7.5% ACN on a glassy carbon electrode at a scan rate of 50 mV/s. The experimental setup was the same as that of Fig. 2a.

Fig. S3. Zn dissolution and deposition in a 1M ZnI₂ electrolyte with and without ACN, as characterized by CV at 50 mV/s.

Fig. S4. Charging and discharging curves of a Zn-I₂ flow battery with 1M ZnI₂ +1M KI at different current densities.

Fig. S5. Charging and discharging curves of a Zn-I₂ flow battery with 1M ZnI₂ + 1M KI + 7.5% ACN at different current densities.