Supplementary information for

Faceted and defect-rich CuMn₂O₄ nanoparticles for efficient electrochemical water splitting

Balasubramanian Jansi Rani^{a,b,\dagger}, Arumugam Sivanantham^{a,c,\dagger}, Tatachari Santhanagopalan Shridharan^{a,c}, Tan Runfa^{a,c}, and In Sun Cho^{a,c,*}

^a Department of Materials Science & Engineering, Ajou University, Suwon 16499, South Korea

^b Engineering Research Institute, Ajou University, Suwon 16499, South Korea

^c Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea

[†] These authors contributed equally to this work.

*Corresponding Author email: <u>insuncho@ajou.ac.kr (I.S.C)</u>

Experimental section

Deposition of CoO_x nanoparticles on f-CMO-600 electrode

 CoO_x coating solution (0.5 M) was prepared by the sol-gel method. Briefly, 0.5 mmol of $Co(NO_3)_2.6H_2O$ (0.146 g) was dissolved in 10 mL of 2-methoxyethanol (2-ME) and sonicated for 30 min to get a transparent pink color solution. Then f-CMO-600 coated Cu foam substrate was dip-coated with the prepared 0.5 M CoO_x solution for 30 s, followed by 350 °C thermal annealing for 30 min to obtain CoO_x/f -CMO-600 electrode. All the electrodes were finally subjected to UV epoxy to avoid the electrolyte uplifting through the Cu foam handles during the experiments.

Preparation of f-CMO pellets for Hall voltage measurements

The grounded f-CMO powders were pressed (without a binder) into a pellet ($\emptyset = 15$ mm, height = 2 mm) with a hydraulic press (DAEWHA, P-50t, South Korea) at a pressure of 900 MPa for 10 s and Zn-stearate was used as a lubricant to prevent fracturing at the die-wall.

Table S1. Inductively coupled plasma-optical emission spectrometry (ICP-OES) result of the f-CMO-600 sample.

Elements	ppb	Mole	
Cu	248270.250	1.04	
Mn	460131.093	1.93	

Thus, the metal molar ratio is Cu: Mn = 1: 1.86.

Table S2. Comparison of electrocatalytic HER activity of faceted $CuMn_2O_4$ nanoparticles (f-CMO) with other reported spinel oxides.

Family	Electrocatalyst materials	Morphology	SEM/TEM image	Electrolyte	HER Overpotential @-100 mA/cm ² (mV vs. RHE)	Ref.
-	f-CuMn ₂ O ₄	Nanopolyhedra		1 M KOH	234	This work
	NiFe ₂ O ₄	Nanoparticles		1 M KOH	241 @-80 mA/cm ²	[1]
	NiCo ₂ O ₄	Nanosheets	E.P.	1 М КОН	255 @-60 mA/cm ²	[2]
	NiCo ₂ O ₄	Hollow microcuboids		0.5 M H ₂ SO ₄	265	[3]
Spinel	NiCo ₂ O ₄	Nanosheets		1 М КОН	272	[4]
oxides	CoMn ₂ O ₄	3D tetragons		0.1 M KOH	284	[5]
-	Co ₃ O ₄	Hollow microtube arrays	1/C	1 M KOH	291	[6]
-	Fe ₃ O ₄	-	-	6 M KOH	305	[7]
-	CoFe ₂ O ₄	Nanoparticles	Ma	1 M KOH	314 @-80 mA/cm ²	[1]
-	CoMn ₂ O ₄	Nanoflowers		1 M KOH	320	[8]
-	NiCo ₂ O ₄	Nanowire arrays		1 M KOH	321	[9]
-	CoCr ₂ O ₄	Mesoporous nanocast		1 M KOH	342	[10]
-	CoMn ₂ O ₄	Nanoflake arrays		1 M NaOH	348	[11]
-	NiCo ₂ O ₄	Urchin like peapods		1 M NaOH	349	[12]
	CoFe ₂ O ₄	-	-	1 M NaOH	352	[13]
-	NiCo ₂ O ₄	Porous nanowires		1 M KOH	358	[14]
-	NiCo ₂ O ₄	Mesoporous nanoarrays		1 M KOH	363	[15]

Family	Electrocatalyst materials	Morphology	SEM/TEM image	Electrolyte	HER Overpotential @-100 mA/cm ² (mV vs. RHE)	Ref.
	f-CuMn ₂ O ₄	Nanopolyhedra		1 М КОН	234	This work
	NiCo ₂ O ₄	Nanoneedle arrays		4 M KOH	378	[16]
	NiCo ₂ O ₄	Nanosheets	ng@	1 М КОН	379 @-20 mA/cm ²	[17]
	MnCo ₂ O ₄	Hierarchical arrays		1 М КОН	385	[18]
Spinel	NiFe ₂ O ₄	Nanoparticles		$0.5~\mathrm{M}\mathrm{H_2SO_4}$	405	[19]
oxides	NiFe ₂ O ₄	Nanoparticles		0.5 M KOH	420	[20]
	NiCo ₂ O ₄	Nanowires		6 M KOH	421	[21]
	ZnFe ₂ O ₄	Nanoparticles		1 M KOH	432 @-80 mA/cm ²	[1]
	MnCo ₂ O ₄	1D nanowires		1 М КОН	446	[22]
	NiCo ₂ O ₄	Nanoflakes		1 M KOH	469	[23]
	NiFe ₂ O ₄	Nanoparticles		1 М КОН	487	[24]
	Co ₃ O ₄	Nanosheet arrays	New	1 M KOH	513	[25]
	MnCo ₂ O ₄	Microrods		1 М КОН	600 @-20 mA/cm ²	[26]
	Co ₃ O ₄	Florets		1 M KOH	646	[27]
	Co ₃ O ₄	Nanoparticles aggregated hexagonal flakes		1 М КОН	646 @-60 mA/cm ²	[28]
	NiFe ₂ O ₄	Nanoparticles		0.5 M KOH	676	[29]
	MnCo ₂ O ₄	Nanofibers		1 M KOH	677 @-10 mA/cm ²	[30]

References

- (1) C. Fan, X. Zhai, L. Chen, S. Peng, R. Jiang, J. Yu, Y. Li, Y. Zhang, W. Kong, G. Ge and X. Guo, *J. Mater. Chem. A*, 2021, **9**, 22277–22290.
- (2) L. Fang, Z. Jiang, H. Xu, L. Liu, Y. guan, X. Gu and Y. Wang, J. Catal., 2018, 357, 238– 246.
- (3) X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, Angew. Chemie -Int. Ed., 2016, 55, 6290–6294.
- (4) C. Xiao, Y. Li, X. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515–3523.
- (5) G. Janani, S. Surendran, H. Choi, M. K. Han and U. Sim, *Small*, 2021, 17, 1–16.
- (6) Y. P. Zhu, T. Y. Ma, M. Jaroniec and S. Z. Qiao, *Angew. Chemie Int. Ed.*, 2017, 56, 1324–1328.
- (7) J. Zhang, X. Shang, H. Ren, J. Chi, H. Fu, B. Dong, C. Liu and Y. Chai, Adv. Mater., 2019, 31, 1–10.
- (8) J. Lee, N. Son, N. K. Park, H. J. Ryu, J. I. Baek, Y. Sohn, J. Y. Do and M. Kang, *Electrochim. Acta*, 2021, **379**, 138168.
- (9) B. Wei, J. Wu, G. Mei, Z. Qi, W. Hu and Z. Wang, *Int. J. Hydrogen Energy*, 2019, 44, 6612–6617.
- (10) A. Saad, H. Shen, Z. Cheng, Q. Ju, H. Guo, M. Munir, A. Turak, J. Wang and M. Yang, ACS Appl. Energy Mater., 2020, 3, 1684–1693.
- (11) C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen and X. Wang, *Adv. Funct. Mater.*, 2020, **30**, 1–10.
- (12) J. Deng, H. Zhang, Y. Zhang, P. Luo, L. Liu and Y. Wang, J. Power Sources, 2017, 372, 46–53.
- (13) H. Zhang, G. Qian, X. Chen, W. Jiang, T. Yu, Y. Wang, L. Luo and S. Yin, ACS Sustain. Chem. Eng., 2021, 9, 980–986.
- (14) Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li, W. Xu and R. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 45546–45553.
- (15) D. Liu, C. Zhang, Y. Yu, Y. Shi, Y. Yu, Z. Niu and B. Zhang, *Nano Res.*, 2018, **11**, 603–613.
- (16) T. Liu and P. Diao, *Nano Res.*, 2020, **13**, 3299–3309.
- (17) F. Lai, J. Feng, X. Ye, W. Zong, G. He, Y. E. Miao, X. Han, X. Y. Ling, I. P. Parkin, B. Pan, Y. Sun and T. Liu, J. Mater. Chem. A, 2019, 7, 827–833.
- (18) J. Ge, W. Zhang, J. Tu, T. Xia, S. Chen and G. Xie, Small, 2020, 16, 1-9.
- (19) A. Mukherjee, S. Chakrabarty, W. N. Su and S. Basu, *Mater. Today Energy*, 2018, **8**, 118–124.
- (20) P. V. Shinde, P. Mane, B. Chakraborty and C. Sekhar Rout, *J. Colloid Interface Sci.*, 2021, **602**, 232–241.
- (21) W. Chu, Z. Shi, Y. Hou, D. Ma, X. Bai, Y. Gao and N. Yang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 2763–2772.
- (22) L. Qi, Z. Zheng, C. Xing, Z. Wang, X. Luan, Y. Xue, F. He and Y. Li, *Adv. Funct. Mater.*, 2021, **2107179**, 1–9.
- (23) Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin, J. Xie, M. Zhao, L. Song, L. Dai and H. Liu, Adv. Sci., DOI:10.1002/advs.201801829.
- (24) J. Jin, J. Yin, H. Liu, B. Huang, Y. Hu, H. Zhang, M. Sun, Y. Peng, P. Xi and C. Yan,

Angew. Chemie, 2021, 133, 14236–14242.

- (25) Z. Xiao, Y. Wang, Y. C. Huang, Z. Wei, C. L. Dong, J. Ma, S. Shen, Y. Li and S. Wang, *Energy Environ. Sci.*, 2017, **10**, 2563–2569.
- (26) X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang and G. Wang, *ACS Sustain. Chem. Eng.*, 2019, **7**, 1169–1177.
- (27) J. Saha, R. Ball, A. Sah, V. Kalyani and C. Subramaniam, *Nanoscale*, 2019, **11**, 13532– 13540.
- (28) X. Zhao, F. Yin, X. He, B. Chen and G. Li, *Electrochim. Acta*, 2020, 363, 137230.
- (29) P. V. Shinde, S. Babu, S. K. Mishra, D. Late, C. S. Rout and M. K. Singh, Sustain. Energy Fuels, 2021, 5, 3906–3917.
- (30) C. Wu, C. Li, B. Yang, S. Zhou, D. Shi, Y. Wang, G. Yang and J. He, *Mat. Res. Express*, 2016, **3**, 095018.

Table S3. Summary of electrochemical impedance spectra (EIS) fitting: R_1 , R_2 and R_3 (applied bias: -0.1 V vs. RHE; Frequency range: 7 MHz to 1 mHz).

Electrode	R₁ (Ohm)	R ₂ (Ohm)	R ₃ (Ohm)
f-CMO-400	1.9	3.1	64.1
f-CMO-600	1.8	1.5	56.0
f-CMO-800	1.8	2.8	57.7

Table S4. Summary of electrochemical impedance spectra (EIS) fitting: R₁, R₂ and R₃ (applied bias: 1.6 V vs. RHE; Frequency range: 7 MHz to 1 mHz).

Electrode`	R₁ (Ohm)	R ₂ (Ohm)	R ₃ (Ohm)
f-CMO-400	2.0	2.2	10.2
f-CMO-600	2.0	2.0	4.0
f-CMO-800	1.9	2.3	4.5
CoO _x /f-CMO-600	2.1	1.9	3.7

Fig. S1. Synthesis and slurry preparation of faceted $CuMn_2O_4$ nanoparticles (f-CMO): (a) Synthesis scheme. (b) Slurry preparation *via* ball milling.

Fig. S2. Structural and morphological analyses: (a) XRD pattern of f-CMO before and after annealing at 600 °C. (b) SEM image of f-CMO before annealing. (c,d) SEM-EDS line scan spectrum of f-CMO before annealing.

Fig. S3. Structural and morphological analyses of non-f-CMOs: (a) XRD pattern. SEM images of (b) before annealing, and (c-e) after annealing.

Further, to examine the role of the hydrothermal treatment (HT) on the facet formation, CMO has been synthesized by using only co-precipitation (without HT) and named as non-f-CMO, as illustrated in **Fig. S3**. Here, the formation of the non-f-CMO was confirmed by the crystal planes such as (111), (220), (311), (222), (400), (422), (511), and (440), which correspond to the cubic crystal structure of CMO (JCPDS #84-0543), with some Mn₃O₄ impurities (**Fig. S3a**). Thus, the synthesis condition without HT had a negative influence on the formation of phase-pure CMO. Moreover, the larger aggregation of undefined nanoparticles (before annealing) resulted from the uncontrolled growth (**Fig. S3b**). After annealing, the size of non-f-CMOs are almost ten times greater than f-CMO (**Fig. S3c-e**). Therefore, this result confirms that co-precipitation without a controlled atmosphere (optimum HT temperature and reaction time) fails to produce the phasepure and size-controlled f-CMO.

Fig. S4. X-ray diffraction (XRD) patterns of the f-CMO-400, f-CMO-600 and f-CMO-800.

Fig. S5. Elemental mapping and EDX spectral analysis of f-CMO: (a) f-CMO-400. (b) f-CMO-600. (c) f-CMO-800.

Fig. S6. Scanning electron microscope (SEM) images of (a) f-CMO-800 slurry after 50 h ball milling. (b) f-CMO-800 electrode.

The SEM analysis of f-CMO-800 catalyst after the 50 h ball milling process was performed to check the structure changes. Notably, even after the long-term ball milling, the structure of the catalyst exhibits the same faceted morphology without any noticeable changes, confirming the structure stability of f-CMO. Our intention to use the ball milling to prepare electrodes was the employment of an inexpensive, facile and scalable method to obtain a well-dispersed and high-quality slurry for the conformal coating of catalyst on the substrate¹.

Reference:

1. A. Kraytsberg, and Y. Ein-Eli, Adv. Energy Mater., 2016, 6, 1600655.

Fig. S7. Surface analysis of f-CMO electrodes: SEM images. (a-c) Low magnification. (d-f) High magnification (image insets are at 500 nm). Red color arrow points out the cracks on the f-CMO electrode surface.

Fig. S8. Linear sweep voltammograms (LSVs) of the control samples: (a) HER. (b) OER. (c) Comparison of the overpotential values.

Fig. S9. Redox behavior of f-CMO electrodes *via* cyclic voltammograms (CVs) at 5 mV/s in 1 M KOH alkaline electrolyte.

Fig. S10. Zoom-in EIS spectra of the f-CMO electrodes, obtained at (a) -0.1 V vs. RHE. (b) 1.6 V vs. RHE.

Fig. S11. Electrochemical active surface area analysis of f-CMO electrodes: Cyclic voltammograms (CVs) of (a) f-CMO-400. (b) f-CMO-600. (c) f-CMO-800 at different scan rates (10, 20, 30, 40 and 50 mV/s).

Fig. S12. Intrinsic catalytic activity: Linear sweep voltammograms (current density) of f-CMO electrodes normalized by ECSA.

Fig. S13. Electrocatalytic OER activity of f-CMO and CoO_x/f -CMO-600 electrodes for water splitting in 1 M KOH: (a) Linear sweep voltammograms (LSVs). (b) Corresponding Tafel plots. (c) Nyquist plot at 1.6 V vs. RHE. (d) Chronoamperometry (CA) stability test of f-CMO-600 at 1.665 V vs. RHE for 10 h. (e) Linear sweep voltammogram (LSV) before and after stability. (f) Electrochemical surface area (ECSA), and cyclic voltammogram (CV) of CoO_x/f -CMO-600 (inset image).

Fig. S14. Structural and morphological analyses of CoO_x/**f-CMO-600 electrode:** (a) XRD pattern. (b) SEM image. (c) SEM-EDS elemental mapping. (d) SEM-EDS microanalysis results.

The XRD, SEM and EDS mapping results of the CoO_x/f -CMO-600 electrode are given **Fig. S14**. The XRD result (**Fig. S14a**) confirms the formation of the CoO_x coating from the diffraction peaks of the crystal planes (111), (200) and (220), which coincide with hexagonal CoO (JCPDS #78-0421)². The SEM image (**Fig. S14b**) shows the faceted morphology of the CoO_x/f -CMO-600 electrode. Furthermore, **Fig. S14c,d** shows uniform distribution and existence of Co, Cu, Mn and O in the CoO_x/f -CMO-600. Therefore, the formation of CoO_x coated f-CMO-600 is confirmed from XRD, SEM and EDS results.

Reference

2. K. Deori, and S. Deka, Cryst Eng Comm., 2013, 15, 8465-8474.

Fig. S15. Electrochemical performance of the two-electrode cell for overall water splitting: (a) Schematic representation of two-electrode cell. (b) Linear sweep voltammograms (LSVs). (c) Chronoamperometry (CA) at a cell voltage of 1.90 and 1.65 V for CoO_x/f -CMO//f-CMO and $RuO_2//Pt/C$ respectively, in 1 M KOH.

Fig. S16. Gas-product collected after HER activity for 3 h (at -0.283 V vs. RHE) of f-CMO-600 electrode: (a) H₂ evolution. (b) Faradaic efficiency (%).

The hydrogen evolution was measured by using a gas chromatograph (YL6500GC, Young In Chromass, South Korea) connected with a pulsed discharge detector (PDD) and a 5 Å zeolite molecular sieve column, from the chronoamperometry test (at -0.283 V vs. RHE) for 3 h. Initially, the electrolyte was adequately purged with helium (He) gas to remove residual gases from the electrochemical cell. Faradaic efficiency (FE) was calculated (**Fig. S16**) using the following equation:

Faradic efficiency (FE) =
$$\frac{\text{moles of } H_2}{J \times A \times t/n \times e \times N_A}$$

where J is the current density (A cm⁻²), A is the area (cm²), t is the time (s), e is the elementary charge (1.602×10^{-19} C), n = 2 for H₂, and N_A is Avogadro's number (6.02×10^{23} mol⁻¹).

Fig. S17. X-ray photoelectron spectroscopy (XPS) analysis of f-CMO: Survey spectra of f-CMO-400, f-CMO-600 and f-CMO-800.

Fig. S18. Oxygen vacancies analysis: Electron paramagnetic resonance (EPR) spectra of f-CMO-400, f-CMO-600 and f-CMO-800.

Fig. S19. Hall voltage measurement and surface analysis of f-CMO (pellet): (a) I–V curves in the applied static current range of -10 to 10 μ A @room temperature. (Inset image shows the schematic representation of Hall measurement circuit). (b) Comparison of room-temperature resistivity. The applied magnetic field (B) is 0.545 T. (c-e) SEM images of the pellet. (Inset image shows high magnification).

Fig. S20. Structural and morphological analyses of f-CMO-600 electrode after 50 h of HER activity in 1 M KOH: (a) XRD pattern. (b) SEM image. (c) SEM-EDS elemental mapping. (d) SEM-EDS microanalysis results.

Fig. S21. XPS survey scan of f-CMO-600 before and after 50 h HER stability.

Fig. S22. X-ray photoelectron spectroscopy (XPS) analysis of f-CMO-600 electrode before and after 50 h of HER activity in 1 M KOH: High-resolution XPS spectra of (a) Cu 2*p*. (b) O 1*s*. (c) Mn 2*p*. The relative percentage of (d) Cu¹⁺ (from Cu 2*p*_{3/2}). (e) O_V. (f) Mn²⁺ (from Mn 2*p*_{3/2}).

Fig. S23. Structural and morphological analyses of CoO_x/f-CMO-600 electrode after 10 h of OER activity in 1 M KOH: (a) XRD pattern. (b) SEM image. (c) SEM-EDS elemental mapping. (d) SEM-EDS microanalysis results.

Fig. S24. XPS survey scan of CoO_x/f-CMO-600 before and after 10 h OER stability.

Fig. S25. X-ray photoelectron spectroscopy (XPS) analysis of CoO_x/f -CMO-600 electrode before and after 10 h of OER activity in 1 M KOH: High-resolution XPS spectra of (a) Cu 2*p*. (b) O 1*s*. (c) Mn 2*p*. (d) Co 2*p*. The relative percentage of (e) Cu²⁺ (from Cu 2*p*_{3/2}). (f) O_V. (g) Mn³⁺ (from Cu 2*p*_{3/2}). (h) Co³⁺ (from Cu 2*p*_{3/2}).

Fig. S26. (a) Chronopotentiometry (CP) of f-CMO-600 at -20 mA/cm² for 10 h. (b) XPS survey scan after CP test. (c) High-resolution XPS spectrum of Pt 4f.

Fig. S27. Impact of facets on the electrochemical active surface area (ECSA) of CMO: Cyclic voltammograms (CVs) of (a) f-CMO. (b) Non-f-CMO at different scan rates (10, 20, 30, 40 and 50 mV/s).