Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Highly Ionic Conductive, Self-healable Solid Polymer Electrolyte Based on Reversibly Interlocked Macromolecule Networks for Lithium Metal Batteries Workable at Room Temperature

Zi Xin Huang^{a†}, Zhen Hua Xie^{a,b,c†}, Ze Ping Zhang^{a*}, Ting Zhang^a, Min Zhi Rong^{a*},

and Ming Qiu Zhang^a*

^a Key Laboratory for Polymeric Composite and Functional Materials of Ministry of

Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou

510275, P. R. China

^b Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing

100049, P. R. China

^c Spallation Neutron Source Science Center, Dongguan 523803, P. R. China

Fig. S1. Temperature dependence of tan δ and storage modulus of (a, c) SN-CN and (b, d) SN-SS measured at 1 Hz. TGA curves of (e) SN-CN and (f) SN-SS.

Sample	$ ho({ m g~cm^{-3}})$	$T_g(^{\circ}\mathrm{C})$	$M_c^{\mathrm{a}}(\mathrm{g\ mol}^{-1})$
SN-CN	1.047	7.3	4821
SN-SS	1.169	-13.0	4548

Table S1. Characterization of the SN-CN and SN-SS using DMA

^a Molecular weight between crosslinks (M_c) of polymer was calculated from:

$$M_c = \frac{3(1-\frac{2}{\phi})\rho RT}{E'}$$
(S1)

where ϕ is functionality of crosslinking site, ρ density, R the universal gas constant, T absolute temperature, and E' storage modulus at rubbery plateau zone, respectively. In this work, E' values at $T = T_g + 30$ °C were used for the calculation.

Fig. S2. HPLC curves of the model small molecules and their mixtures after exchange

at room temperature for 2 h.

Fig. S3. Representative images of the water contact angles of (a) SN-CN-LiPF₆, (b) SN-SS-LiPF₆, (c) RILNs-3/1-LiPF₆, (d) RILNs-1/1-LiPF₆ and (e) RILNs-1/3-LiPF₆.

Sample	Contact angle	$\gamma_{ m s}$	$\gamma_s{}^d$	$\gamma_s{}^p$
	(°)	(mJ m ⁻²)	$(mJ m^{-2})$	(mJ m ⁻²)
SN-CN-LiPF ₆	126.5	4.16	3.38	0.79
RILNs-3/1-LiPF ₆	115.6	26.04	25.95	0.10
RILNs-1/1-LiPF ₆	113.0	29.21	29.15	0.06
RILNs-1/3-LiPF ₆	108.4	32.32	32.31	0.01
SN-SS-LiPF ₆	107.7	33.04	33.03	0.01

Table S2. Water contact angles and surface energies of the SPEs

Fig. S4. Swelling degree as a function of time of the SPEs respectively based on the single networks and RILNs.

Table S3. Characterization of the SPEs using DSC and DMA

Sample	$T_m(^{\circ}\mathrm{C})$	ΔH_f (J g ⁻¹)	X_c (%)	$T_g(^{\circ}\mathrm{C})$
SN-CN-LiPF ₆	31.8	59.41	33.61	-7.1
RILNs-3/1-LiPF ₆	N/A	N/A	N/A	-9.8
RILNs-1/1-LiPF ₆	N/A	N/A	N/A	-13.1
RILNs-1/3-LiPF ₆	N/A	N/A	N/A	-16.1
SN-SS-LiPF ₆	45.2	63.18	35.74	-16.9

Table S4. Tensile properties of the SPEs

Sample	Tensile Strength (MPa)	Elongation at break (%)
SN-CN-LiPF ₆	0.10 ± 0.005	218.2±5.4
RILNs-3/1-LiPF ₆	0.46 ± 0.009	285.8±6.1
RILNs-1/1-LiPF ₆	0.87±0.023	248.1±7.4
RILNs-1/3-LiPF ₆	0.51 ± 0.012	128.3 ± 4.2
SN-SS-LiPF ₆	0.32 ± 0.007	98.5±4.0

Table S5. Ionic conductivities of the SPEs

Tomanonotumo	Ionic conductivity $(10^{-4} \text{ S cm}^{-1})$				
(°C)	SN-CN-	RILNs-3/1-	RILNs-1/1-	RILNs-1/3-	SN-SS-
(10)	LiPF ₆	LiPF ₆	LiPF ₆	LiPF ₆	LiPF ₆
25	0.44	6.97	6.39	5.95	0.21
30	2.03	8.41	7.90	7.05	0.34
40	12.77	12.3	11.56	10.31	2.81
50	18.22	17.5	16.44	15.08	11.47
60	25.74	25.00	22.29	20.95	16.23
70	37.13	34.10	32.04	28.58	25.28

Fig. S5. Chronoamperometry profiles of the symmetric Li|SPE|Li cells with a polarization potential of 10 mV on the basis of (a) SN-CN-LiPF₆, (b) SN-SS-LiPF₆, (c) RILNs-3/1-LiPF₆, (d) RILNs-1/1-LiPF₆ and (e) RILNs-1/3-LiPF₆. The insets show the AC impedance spectra before and after polarization at 25 °C.

Sample	$I_0(\mathrm{mA})$	I_s (mA)	$R_{ heta}\left(\Omega ight)$	$R_{s}\left(\Omega ight)$	t_{Li^+}
SN-CN-LiPF ₆	0.00386	0.00175	1134	1273	0.33
RILNs-3/1-LiPF ₆	0.00553	0.00342	793	814	0.48
RILNs-1/1-LiPF ₆	0.00517	0.00301	823	861	0.45
RILNs-1/3-LiPF ₆	0.00493	0.00280	806	831	0.43
SN-SS-LiPF ₆	0.00359	0.00169	1568	1806	0.30

Table S6. Lithium-ion transference number of the SPEs calculated from Fig. S5

Note: I_0 , initial current; I_s , steady-state current; R_0 , interfacial resistance before polarization; R_s , interfacial resistance after polarization.

Fig. S6. LSV curves of the SPEs at 25 °C.

Fig. S7. The thermogravimetric curve of RILNs-3/1-LiPF₆.

Fig. S8. Rate capability of the symmetric Li|RILNs-3/1-LiPF₆|Li cell at 25 °C. The

capacity was fixed at 0.1 mAh cm⁻².

Fig. S9. CV curves of the $Li|RILNs-3/1-LiPF_6|LiFePO_4$ cell measured at a scan

rate of 0.1 mV s⁻¹.

Fig. S10. Peel tests of the adhesion between the SPEs and lithium metal.

Fig. S11. SEM images of the cross-sections of Li|SN-CN-LiPF₆ (a, b, c) before and (d, e, f) after 50 cycles at 0.1 C. Note: The portions colored by light auburn denote the Li anode.

Fig. S12. SEM images of the cross-sections of $\text{Li}|\text{SN-SS-LiPF}_6$ (a, b, c) before and (d, e, f) after 50 cycles at 0.1 C. Note: The portions colored by light auburn denote the Li anode.

Fig. S13. Normalized stress relaxation of (a) SN-CN-LiPF₆, (b) SN-SS-LiPF₆, (c) RILNs-3/1-LiPF₆ as a function of temperature. (d) Fitting of the temperature dependences of the characteristic relaxation time, τ^* , obtained from (a), (b) and (c) according to the Arrhenius equation.

Sample	$ au^*(s)$				E _{a,r}
	90 °C	70 °C	50 °C	30 °C	(kJ mol ⁻¹)
SN-CN-LiPF ₆	4.65	9.42	15.06	32.82	29.5
RILNs-3/1-LiPF ₆	6.29	18.92	46.06	144.98	47.6
SN-SS-LiPF ₆	130.11	280.18	626.37	2186.41	43.2

Table S7. τ^* and $E_{a,r}$ of the SPEs obtained from Fig. S13

Table S8. Tensile properties and ionic conductivities of the original and healed RILNs-

Samples name	Tensile strength (M Pa)	Elongation at break (%)	Ionic conductivity at 25 °C (10 ⁻⁴ S cm ⁻¹)	Healing efficiency ^a (%)	Healing efficiency ^b (%)
Virgin	0.46	285.5	6.97	N/A	N/A
1 st healed	0.43	269.9	6.51	94.5	93.4
2 nd healed	0.40	261.8	6.09	91.7	87.4
3 rd healed	0.34	238.0	5.90	83.4	84.6

3/1-LiPF₆

^a Calculated from the ratio of elongation at break of the healed specimen to that of the virgin specimen

^b Calculated from the ratio of ionic conductivity of the healed specimen to that of the virgin specimen