Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting information

Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries

Cun Song^a, Zhengang Li^a, Jun Peng^a, Xiaohong Wu^a, Hao Peng^b, Shiyuan Zhou^a, Yu Qiao^a, Hui Sun^b, Ling Huang^{a*}, Shi-Gang Sun^{a*}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China

^b State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, 102249, P. R. China The ionic conductivity (κ) was calculated from the following equation:

$$\kappa = L/R_b S \tag{S1}$$

where L is the thickness of SPEs membrane, R_b is the bulk resistance of SPEs membrane that can be measured by EIS, S is the area of the stainless electrodes.

The Li⁺ current fraction was calculated by the Bruce-Vincent method (Li/Li symmetrical cells with SPEs) and the ρ^+ is defined by the following equation:

$$\rho^{+} = \frac{i_{ss}}{i_{\Omega}} \times \frac{\Delta V - i_{\Omega} R_{i,0} A}{\Delta V - i_{SS} R_{i,SS} A}$$
(S2)

where i_{ss} and i_{Ω} refer to the steady-state and initial current densities, ΔV is the dc potential across the electrolyte (10 mV in this work), $R_{i,ss}$ and $R_{i,0}$ refer to the interfacial resistance at steady-state and initial state, respectively, A is the area of electrode. The shortcircuit test is conducted at a current density of 0.1 mA cm⁻², where with the battery configuration of Li/Li symmetrical cells with SPEs.

The short-circuit time prediction.¹

In Nernst-Einstein equation theory, the ambipolar diffusion coefficient (D) can be calculated via law:

$$D = \sigma KT / C_0 q^2 \tag{S3}$$

where σ (i.e., κ) is DC ionic conductivity, *T* is the absolute temperature, *K* is the Boltzmann constant, and c_0 is the Li concentration defined as the number of Li per unit volume, and *q* is the elementary charge.

The dendrite growth velocity v is equal to the anions drift velocity at the applied electric field. The v can be calculated by the following equation:

$$\nu = \mu_a E_0 \tag{S4}$$

$$E_0 = J/\sigma \tag{S5}$$

Where μ_a is the anion mobility, E_0 is the applied electric field, J is the applied current density. The time required for dendrites to grow, propagate and traverse the distance L between anode and cathode can be described by the following equation:

$$t_g = \sigma L / \mu_a J \tag{S6}$$

The μ_a can be obtained from the Einstein relation as:

$$\mu_a = qDt_a/kT \tag{S7}$$

The dendrite growth onset time (Sand's time) can be described as follows:

$$\tau_s = \pi D \left(\frac{eC_0}{2Jt_a}\right)^2 \tag{S8}$$

where τ_s is sand's time, *e* is the elementary charge, t_a is the anionic transference number that equals to $1-t_{Li^+}$, and the t_{Li^+} is of the similar calculation equation to Li⁺ current fraction. Based on the discussion above, the predicted short-circuit time t_{sc} can be obtained via a law:

$$t_{sc} = \pi D (e^{C_0}/2Jt_a)^2 + \sigma L/\mu_a L$$
 (S9)

The higher t_{sc} is, the longer lifetime of batteries are.

Sample	PEO wt%	LiTFSI wt%	LLZTO wt%	FEC wt%	SN wt%
PEO-SPEs	73.93%	26.61%			
PL-SPEs	60.60%	21.97%	17.43%		
PLF-SPEs	56.38%	20.37%	16.21%	7.04%	
PLFS-SPEs	45.74%	16.52%	13.15%	5.72%	18.87%

Table S1. The specific component proportions of PEO-, PEO/LLZTO-, PEO/LLZTO/FEC-, PLFS-SPEs.

Sample	i _Ω /μA	$\dot{i}_{ss}/\mu A$	$R_{i,0}\!/\Omega$	$R_{i,ss}\!/\!\Omega$	ρ^+	к(25°С) /10 ⁻⁴ S cm ⁻¹	$\kappa \rho^+$ /10 ⁻⁶ S cm ⁻¹	$\kappa \rho^+ / \kappa \rho^+_{(PEO)}$
PEO	9.67	2.55	603	697	0.134	0.11	1.49	1
PL	7.77	1.86	430	432	0.173	0.09	1.58	1.06
PLF	5.02	1.51	725	587	0.201	0.99	20.67	13.85
PLFS	16.45	8.96	279	271	0.389	1.58	61.63	41.29

Table S2. The calculation results of specific parameters.

Figure S1. Li⁺ current fraction (ρ^+), calculated by formula (2), of various SPEs: a, b, c, d) PEO-, PEO-LLZTO-, PEO-LLZTO-FEC-, PLFS-SPEs at 25°C.

Figure S2. XRD patterns of various SPEs.

Figure S3. XRD patterns of LLZTO-pristine and air-placed for different time.

After placing LLZTO in air-exposed condition, new diffraction peak at 21.34° and 31.78° corresponding to Li₂CO₃ appeared, indicating that the Li₂CO₃ is easily formed during LLZTO synthesis and transfer process.²

Figure S4. A possible scheme of Li⁺ transfer in PEO/LLZTO electrolyte.

The incorporated LLZTO in PEO segment chains is beneficial to promote the Li^+ conduction at the LLZTO/PEO interface, while the Li_2CO_3 formed at LLZTO surface hindered this process, resulting in the decrease of ionic conductivity of PL-SPEs even though the crystallinity of PEO was decreased.

Figure S5. a) The fitting curves of Arrhenius equation of varies SPEs, b) the Li⁺ transfer activation energy of varies SPEs.

The Li⁺ transfer activation energy can be calculated by fitting Arrhenius equation:

$$\log \kappa = \log A + \frac{-E_a}{2303R} (\frac{1000}{T})$$
(S10)

Where A is a constant that is proportional to the charge carrier number, E_a is the Li⁺ transfer activation energy, R is the perfect gas constant.

Figure S6. a, b) Raman spectra of PEO, PEO-SN and PLFS. c) Gutmann donor number of PEO and SN.

As shown in Figure S6a and S6b, a strong Raman band at 2253 cm⁻¹ corresponds to the -C=N stretching of SN. A weak signal of 2253 cm⁻¹ of PEO curve originates from the residual AN solvent molecule. With the addition of SN, a Raman band at 2280 cm⁻¹ corresponding to Li⁺-SN appears, indicating that the SN participated in Li⁺ coordination.

Figure S7. The impedance spectra of Li/Li symmetrical batteries with PEO- and PLFS-SPEs.

Electrolyte	$\Delta H_{m} \left(Jg^{-1} \right)$	X%
PEO	123.4	60.8
PLFS	36.31	17.9

Table S3. The values of ΔH_m from DSC test and X_c of PEO- and PLFS-SPEs.

The crystallinities (X_c) of SPEs can be calculated by the following equation:

$$x_c = \Delta H_m / \Delta H_{PEO} \tag{S11}$$

Where X_c represents the relative percentage of crystallinity of PEO-SPEs, and the ΔH_{PEO} represents the ΔH of 100 % crystalline PEO (203 J g⁻¹).

Figure S8. Morphology characterization of PLFS-SPEs. a, b) SEM images of front and side view of PLFS-SPEs' morphology. c) Thickness measurement of PLFS-SPEs. d, e) The digital picture and flexible properties of PLFS-SPEs.

Figure S9. a, b) Cycling performance and voltage-capacity profiles of Li/PEO/LFP battery operated at 50 °C and 0.5 C.

As shown in Figure S9, when cycled at 0.1 C during the active process, the Li/PEO/LFP battery demonstrates a capacity increase to around 150 mAh g⁻¹, revealing the good contact of PEO-SPEs to electrode that have no obvious impact to capacity at low rate. When give a high rate of 0.5 C, a huge capacity discrepancy appeared, which should be attributed to the mass transfer polarization.

Figure S10. Linear sweep voltammetry curves of PLFS-SPEs under 25 $^{\circ}$ C at a scan rate of 1 mV s⁻¹.

Figure S11. Comparison of interfacial resistance in Li/Li symmetry cell with PEO-SPEs before and after heat treatment.

Figure S12. Electrochemical performance of Li/LFP battery assembled with PEO-SPEs at 25 $^{\circ}$ C.

Figure S13. Rate performance of Li/LFP battery assembled with PEO-SPEs at various current density (25 $^{\circ}$ C).

Temperature (°C)	Cycle number	SPEs configuration	к (10 ⁻⁴ S cm ⁻¹)	ρ^+	Ref.
25	700	PEO/LLZTO/FEC/SN	1.58	0.39	this work
25	30	PEO/3D LLTO	1.80	0.33	3
25	100	PEO-TEGDME-EMIMTFSI- LiTFSI-BP	24.0	0.32	4
25	120	PEO-ANP-5	3.00	0.95	5
50	400	PEO/LLZTO/FEC/SN	8.68	0.39	this work
60	70	PEO/LLTO/LiTFSI	2.39		6
55	100	PEO/LiTFSI+10%LLZTO	1.17		7
60	50	PEO-h-BN-LiTFSI	1.45	0.33	8
60	100	PEO-LLZTO-LiTFSI	0.112	0.58	9
55	100	70LLZO-30PEC-5(PVdF-HFP)- 60LiFSI	0.52(50°C)	0.82(50°C)	10

Table S4. Comparison of electrochemical performance of Li-metal batteries of this work with those reported in literatures. The Li-metal batteries were assembled with various SPEs operated at 25 $^{\circ}$ C and 50 $^{\circ}$ C.

Figure S14. Diagram of Li/Li symmetric cell with CR 2025-type cell.

Figure S15. Diagram of Li/LFP battery with CR 2016-type cell.

References:

[1] X. Li, Y. Zheng, Q. Pan, C.Y. Li, Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2019, 11 (38), 34904-34912.

[2] W. Xia, B. Xu, H. Duan, X. Tang, Y. Guo, H. Kang, H. Li, H. Liu, Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society 2017, 100 (7), 2832-2839.

[3] X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.H. Lin, L. Li, Y. Shen, C.W. Nan, Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (29), 24791-24798.

[4] R. Rojaee, S. Cavallo, S. Mogurampelly, B.K. Wheatle, V. Yurkiv, R. Deivanayagam, T. Foroozan, M.G. Rasul, S. Sharifi-Asl, A.H. Phakatkar, M. Cheng, S.B. Son, Y. Pan, F. Mashayek, V. Ganesan, R. Shahbazian-Yassar, Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries. Adv. Funct. Mater. 2020, 30 (32), 1910749.

[5] D.M. Shin, J.E. Bachman, M.K. Taylor, J. Kamcev, J.G. Park, M.E. Ziebel, E. Velasquez, N.N. Jarenwattananon, G.K. Sethi, Y. Cui, J.R. Long, A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries. Adv. Mater. 2020, 32 (10), 1905771.

[6] Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.-H. Yang, F. Kang, Y.-B. He, Low Resistance-Integrated All-Solid-State Battery Achieved by Li7La3Zr2O12 Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder. Adv. Funct. Mater. 2019, 29 (1), 1805301.

[7] L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic". Nano Energy 2018, 46, 176-184.

[8] Y. Li, L. Zhang, Z. Sun, G. Gao, S. Lu, M. Zhu, Y. Zhang, Z. Jia, C. Xiao, H. Bu, K. Xi, S. Ding, Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A 2020, 8 (19), 9579-9589.

[9] C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu, P.Y. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (42), 11069-11074.

[10] Z. He, L. Chen, B. Zhang, Y. Liu, L.-Z. Fan, Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232-238.