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The ionic conductivity (k) was calculated from the following equation:

K:L/RbS (S1)

where L is the thickness of SPEs membrane, R, is the bulk resistance of SPEs membrane
that can be measured by EIS, S is the area of the stainless electrodes.

The Li* current fraction was calculated by the Bruce-Vincent method (Li/Li symmetrical
cells with SPEs) and the p* is defined by the following equation:

iy AV -igR;,A
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where i, and i, refer to the steady-state and initial current densities, 4V is the dc
potential across the electrolyte (10 mV in this work), R, and R;, refer to the interfacial
resistance at steady-state and initial state, respectively, 4 is the area of electrode. The short-
circuit test is conducted at a current density of 0.1 mA cm?, where with the battery

configuration of Li/Li symmetrical cells with SPEs.

The short-circuit time prediction.!

In Nernst-Einstein equation theory, the ambipolar diffusion coefficient (D) can be

calculated via law:

2
D =0KT/cyq (S3)

where o (i.e., k) is DC ionic conductivity, 7 is the absolute temperature, K is the
Boltzmann constant, and ¢, is the Li concentration defined as the number of Li per unit
volume, and ¢ is the elementary charge.

The dendrite growth velocity v is equal to the anions drift velocity at the applied electric

field. The v can be calculated by the following equation:
v =tk (S4)
EO :]/0' (SS)

Where y, is the anion mobility, E, is the applied electric field, J is the applied current
density. The time required for dendrites to grow, propagate and traverse the distance L

between anode and cathode can be described by the following equation:

ty=L/u] (S6)



The y, can be obtained from the Einstein relation as:

U, = qDt /kT (S7)
The dendrite growth onset time (Sand’s time) can be described as follows:

T, =T[D(eC0/2]ta)2 (S8)

where 7, is sand’s time, e is the elementary charge, #, is the anionic transference number
that equals to 1-#,+, and the #,+ is of the similar calculation equation to Li* current fraction.

Based on the discussion above, the predicted short-circuit time #,. can be obtained via a law:

toe = mD(C0/2Jt ) + TL/u, L (S9)

The higher s is, the longer lifetime of batteries are.



Table S1. The specific component proportions of PEO-, PEO/LLZTO-, PEO/LLZTO/FEC-,
PLFS-SPEs.

Sample PEO wt% LiTFSI wt% LLZTO wt% FEC wt% SN wt%

PEO-SPEs 73.93% 26.61% -- -- --
PL-SPEs 60.60% 21.97% 17.43% -- --
PLF-SPEs 56.38% 20.37% 16.21% 7.04% --

PLFS-SPEs 45.74% 16.52% 13.15% 5.72% 18.87%




Table S2. The calculation results of specific parameters.

Sample io/uA  i/pA  Ri/Q Ri/Q  pt /1'39;031-1 /10":<g+cm‘1 Kp*/KP* pEO)
PEO 967 255 603 697 0134  0.11 1.49 1
PL 777 186 430 432 0.173  0.09 1.58 1.06
PLF 502 151 725 587 0201 0.9 20.67 13.85
PLFS 1645 896 279 271 0389 1.8 61.63 41.29
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Figure S1. Li* current fraction (p*), calculated by formula (2), of various SPEs: a, b, ¢, d)

PEO-, PEO-LLZTO-, PEO-LLZTO-FEC-, PLFS-SPEs at 25°C.
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Figure S2. XRD patterns of various SPEs.
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Figure S3. XRD patterns of LLZTO-pristine and air-placed for different time.

After placing LLZTO in air-exposed condition, new diffraction peak at 21.34° and
31.78° corresponding to Li,COj; appeared, indicating that the Li,COs; is easily formed during

LLZTO synthesis and transfer process.?



Figure S4. A possible scheme of Li* transfer in PEO/LLZTO electrolyte.

The incorporated LLZTO in PEO segment chains is beneficial to promote the Li*
conduction at the LLZTO/PEO interface, while the Li,CO; formed at LLZTO surface
hindered this process, resulting in the decrease of ionic conductivity of PL-SPEs even though

the crystallinity of PEO was decreased.
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Figure S5. a) The fitting curves of Arrhenius equation of varies SPEs, b) the Li" transfer
activation energy of varies SPEs.
The Li* transfer activation energy can be calculated by fitting Arrhenius equation:

-E, (1000)
2303R™ T (S10)

logk=1log A+

Where A4 is a constant that is proportional to the charge carrier number, E, is the Li*

transfer activation energy, R is the perfect gas constant.
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Figure S6. a, b) Raman spectra of PEO, PEO-SN and PLFS. ¢) Gutmann donor number of

PEO and SN.

As shown in Figure S6a and S6b, a strong Raman band at 2253 ¢cm™! corresponds to the -
C=N stretching of SN. A weak signal of 2253 cm-! of PEO curve originates from the residual

AN solvent molecule. With the addition of SN, a Raman band at 2280 cm™! corresponding to

Li*-SN appears, indicating that the SN participated in Li* coordination.
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Figure S7. The impedance spectra of Li/Li symmetrical batteries with PEO- and PLFS-SPEs.
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Table S3. The values of AH,,, from DSC test and X, of PEO- and PLFS-SPEs.
Electrolyte AH, (Jg') X%

PEO 123.4 60.8

PLFS 36.31 17.9

The crystallinities (X.) of SPEs can be calculated by the following equation:
x, = AHuw/AH by (Si1)

Where X, represents the relative percentage of crystallinity of PEO-SPEs, and the AHpgo

represents the AH of 100 % crystalline PEO (203 J g1).
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Figure S8. Morphology characterization of PLFS-SPEs. a, b) SEM images of front and side
view of PLFS-SPEs’ morphology. c¢) Thickness measurement of PLFS-SPEs. d, e) The digital
picture and flexible properties of PLFS-SPEs.
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Figure S9. a, b) Cycling performance and voltage-capacity profiles of Li/PEO/LFP battery
operated at 50 °C and 0.5 C.

As shown in Figure S9, when cycled at 0.1 C during the active process, the Li/PEO/LFP
battery demonstrates a capacity increase to around 150 mAh g, revealing the good contact of
PEO-SPEs to electrode that have no obvious impact to capacity at low rate. When give a high

rate of 0.5 C, a huge capacity discrepancy appeared, which should be attributed to the mass

transfer polarization.
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Figure S10. Linear sweep voltammetry curves of PLFS-SPEs under 25 °C at a scan rate of 1
mV s
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Figure S11. Comparison of interfacial resistance in Li/Li symmetry cell with PEO-SPEs
before and after heat treatment.
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Figure S12. Electrochemical performance of Li/LFP battery assembled with PEO-SPEs at 25
°C.
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Figure S13. Rate performance of Li/LFP battery assembled with PEO-SPEs at various current
density (25 °C).
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Table S4. Comparison of electrochemical performance of Li-metal batteries of this work with
those reported in literatures. The Li-metal batteries were assembled with various SPEs
operated at 25 °C and 50 °C.

Temperature | Cycle SPEs configuration K ot Ref
(°O) number (104 S em™) )
25 700 PEO/LLZTO/FEC/SN 1.58 0.39 this work
25 30 PEO/3D LLTO 1.80 0.33 3
25 100 PEO-TEGDME-EMIMTESI- 24.0 0.32 &
LiTESI-BP
25 120 PEO-ANP-5 3.00 0.95 >
50 400 PEO/LLZTO/FEC/SN 8.68 0.39 this work
60 70 PEO/LLTO/LiTFSI 2.39 -—- 6
55 100 PEO/LiTFSI+10%LLZTO 1.17 -—- 7
60 50 PEO-h-BN-LiTFSI 1.45 0.33 &
60 100 PEO-LLZTO-LiTFSI 0.112 0.58 9
u - L _ 10
55 100 70LLZO 306P(l)§lIiFSS(deF HFP) 0.52(50°C) |0.82(50°C)
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Figure S14. Diagram of Li/Li symmetric cell with CR 2025-type cell.
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Figure S15. Diagram of Li/LFP battery with CR 2016-type cell.
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