Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Solar-driven interfacial evaporation for Water Treatment: Advanced

Research Progress and Challenges

Jiyan Li*, Yanju Jing, Guoyu Xing, Meichen Liu, Yang Cui, Hanxue Sun, Zhaoqi

Zhu, Weidong Liang, An Li*

College of Petrochemical Technology, Lanzhou University of Technology,

Langongping Road 287, Lanzhou 730050, P. R. China

*E-mail: lian2010@lut.cn; lijiyan3@163.com

	Table S1. Acid and alka	li resistance of SDIE						
	Composition	Acidic/ Alkaline solution/pH	Purification effect	Method		RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.
1	NiCoxSy-PANI@GF	HCl/pH=1; NaOH/pH=14	Structural stability without any corrosion.	Continuous immersion		1.3	78.7	1
2	Carbonized pencil shaving wastes (CPS)	1mol/L H ₂ SO ₄ /pH=1; 1mol/L NaOH/ pH=14	No decompose or deform	Immersion evaporation	and	1.2	82.2	2
3	Copper-zinc-tin- selenide (CZTSe) nanocarambolas	5×10 ⁻⁴ M H ₂ SO ₄ /pH=1,3; 5×10 ⁻² M NaOH/pH=11,14	H ⁺ and OH [−] concentrations decreases to 10 ⁻³ and 10 ⁻¹ M	Immersion evaporation	and	1.528	86.4	3
4	Ag-PDA@wood	H ₂ SO ₄ /pH~1, NaOH/pH~14	The evaporated water exhibits a pH close to 7	Evaporation		1.58	88.6	4
5	Polypyrrole-wax gourd	HCI/pH=1, NaOH/pH=13	Still kept the high and steady evaporation rates	Evaporation		1.57	77.3	5
6	Carbon cloth nanocomposite with biomimetic pelargonium hortorum-petal-like surface(CC- BPHPLS)	рН~1, рН~14	The evaporated water exhibits a pH close to 7	Evaporation		1.42	93	6
7	Hydrophobic and porous carbon nanofiber(HPCNF) membrane	PH=3, PH=12	Evaporation rate is stable	Immersion evaporation	and	1.43 1.42~1. 43 (acid & alkaline)	87.5	7
8	Sulfuric acid hydrothermal carbonized sugarcane (SHCSC)	1 M H ₂ SO ₄ , 1 M NaOH	The evaporation rates is stable.	Immersion evaporation	and	2.32 (pure) 2.30 (acid) 2.27 (alkali)		8
9	Chitosan/gelatin- based IPN sponge incorporated with melanin-coated titania hollow nanospheres (CG@MPT-h)	HCI/pH=2~7, NaOH/pH=7~11	Evaporation rate is stable	Evaporation		1.13	78.9	9
10	Pt ₃ Ni–S-deposited Teflon (PTFE) Membrane	HCI/pH=1.2; NaOH/pH=12	Evaporation rate is stable	Immersion evaporation	and	1.27 (pure) 0.93~1. 04 (acid & alkaline)	80	10
11	Aligned attapulgite-based aerogel	pH=1 and 13	The pH of the condensed water is ca. 7	Immersion evaporation	and	1.41	87.6	11
12	The Janus PDMS/PDA/PU evaporator	pH=3~12	Evaporation rate is stable	Immersion evaporation	and	1.2	90.67	12

	Table S1(contiued)						
	Composition	Acidic/ Alkaline solution/pH	Purification effect	Method	RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.
13	Multi-walled carbon nanotube (MWCNT) bucky paper	1 mol/L H ₂ SO ₄	No damage. Evaporation rate is stable	Immersion	0.79	56	13
14	A-MU/PAN-3# textile	HCl/pH=1; NaOH/pH=14	Stable structure	Immersion	1.4	89.2	14
15	Multifunctional blacksand aggregate	0.5M H ₂ SO ₄	Stable structure	Immersion (1 y)	1.43	94.96	15
16	GO/Mxene aerogel	H ₂ SO ₄ ,NaOH pH=1~14	The pH of condensate is ca. 7	Evaporation	1.27	90.7	16
17	Carbonized loofah sponge	1mol/L H ₂ SO ₄ /pH =1, 1 mol/L NaOH/ pH =14	The pH of condensate is ca. 7	solar distillation	1.36	83.7	17
18	Ethanol-treated- carrot biochar,(ECB)	12 M HCl, 10 M NaOH	Evaporation rate is stable	Evaporation	2.04	127.8	18
19	PVA hydrogel-based 3D evaporator	HCI/pH=1, NaOH/pH=12.5	The pH of the purified brine was close to neutral	Evaporation	2.22(3.5 wt%NaC l)		19
20	KMnO₄ oxidized wood (K-wood)	pH=2,12	The structure and evaporation rate are stable	Evaporation	1.22	81.4	20
21	Superhydrophobic silicone sponge with multi-walled carbon nanotubes (MWCNTs)	2 M H ₂ SO ₄ , 2 M NaOH	The pH of aqueous solutions has a negligible effect on the evaporation rate	Immersion (30 d) and evaporation	1.72	92.4	21
22	Porous foam based on cross-linked aromatic polymer	0.1 M HCl, 0.1 M NaOH	The pH was close to neutral after desalination.	Evaporation	1.3986	87.6	22
23	Wood-TA-Fe ³⁺	HCI/pH=2, NaOH/pH =12	The light absorbing layer can keep black	Immersion (1 d) and evaporation	1.85	90	23
24	Lotus-Inspired Janus biomimetic evaporator (MBE)	0.1 mol/L H ₂ SO ₄ , 0.1 mol/L KOH	The purified water meets the standards of drinking water	Evaporation	1.597	74.2	24
25	Solar evaporator constructed by poly(vinyl alcohol) and sodium lignosulfonate (SLS)	1 mol/L HCl, 1 mol/L NaOH	The pH of is ca. 7	Evaporation	2.09	80.4	25
26	KGM / Fe-MOF / PVA network	pH =2~14	Effect evaporation stability	Evaporation	3.2	90	26
27	Calcinated poly- melamine- formaldehyde sponge (MS)in air (AMS)	0.1 mol/L HCl pH~1, 0.1 mol/L NaOH pH~14	The pH of the purified brine was close to neutral	Evaporation	1.98	92	27

	Table S1(contiued)						
	Composition	Acidic/ Alkaline solution/pH	Purification effect	Method	RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.
28	SHPP membrane	1wt% CH ₃ COOH pH=2.8, 1wt% Na ₂ CO ₃ pH=11.7	Structural stability	Immersion	1.68	97.3	28
29	M-PPy sponge	0.1 M HCl, 0.1 M NaOH	The evaporation rate and energy efficiency are almost unchanged	Immersion and evaporation	1.447	84.72	29
30	MXene/LSC hydrogels (MLH)	1mol/L HCl pH=1, 1 mol/L NaOH pH =14	The pH of the collected water was close to neutral	Immersion and evaporation	2.73	92.3	30
31	PDA/PEI/PPy@PI-MS Photothermal Aerogel	HCl/pH=1, NaOH/pH=13	Stable evaporation efficiency	Immersion and evaporation	1.38	93.04	31
32	Modified melamine foam	0.5 M H ₂ SO ₄ /pH =1, 1 M NaOH/pH= 14	The purified water is close to neutral (pH=7).	Evaporation	1.38	86.9	32
33	Black PVA sponge soaked in nitric acid	0.5 M H ₂ SO ₄ , 1M NaOH	The pH of evaporated water is ca. 7	Evaporation	2.72		33

 Table S2.
 Bacteriostasis and algal inhibition of SDIE

Num.	Material	Bacteria species	Antibacterial effect	Method	RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.
1	Cu@CuO/CG-aero Janus membrane	E.coli	No bacteria were found in the solar steamed water	Evaporation decontamination	1.32	88	34
2	Carbonized sorghum stalk	Colonies cultured from seawater samples on tryptone agar plate	No bacterial colony was observed in the treated seawater		3.173		35
3	rGO/PTFE composite membrane		Chemical sterilization indicator color from light yellow to black, sterilization success	Sterilizing with high temperature		84	36
4	Activated carbon-juncus effusus (AC-JE)	Colonies cultured in petri dishes with original water samples	No obvious impurities were detected in purified lake water		2.23		37
5	MXene/cellulose photothermal membrane	E.coli S. aureus	After 24 hours, the inhibition rates of E.coli and S. aureus were 99.99 % and 99.98 %, respectively	Physical damage to bacterial membranes	1.44	90	38
6	HHNDL membrane	E.coli S. aureus	10 ⁶ ultra-high quantities of bacteria can be completely intercepted	Evaporation interception	1.657	86.6	39
7	Copper-zinc-tin- selenide (CZTSe) nanocarambolas	S. aureus	CZTSe membrane had no biological pollution	Evaporation interception	1.528	86.4	3
8	Ag-PDA@wood	E.coli	24 h later, bacteria almost completely killed	Sterilization effect of Ag	1.58	88.6	4
9	Localized interfacial electrical- heating (LIEH) evaporation	E. coli	All E. coli bacterial cells were killed	Sterilizing with high temperature	14.53	90	40
10	Double-layered GO– chitosan/ZnO scaffold (GCZ scaffold)	S. aureus E. coli	72 h later, the number of bacterial cells decreased	Antibacterial effect of ROS	13.5 (10 sun)	90.8 (10 sun)	41
11	FTCS-PDA/BNC membrane	E.coli	No living bacteria were found after exposure for 10 min	Local temperature rise sterilization	1.0	68	42
12	Vertically oriented graphene nanosheets and graphene aerogel (VG/GA)		Bioindicator color from yellow to purple, sterilization success	Sterilizing with high temperature	12.32 (10 sun)	89.4 (10 sun)	43

Num.	Material	Bacteria species	Antibacterial effect	Method	RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.
13	PU/CNT/ZCB fabrics	E. coli S. aureus	S. aureus decreased by 86.5 %, E. coli decreased by 96.2 %		2.2	93.5	44
14	W-cotton cloth-NCC	E. coli	Retention rate of E. coli can reach more than 99.9 % under 10^6 bacteria	Evaporation interception	1.88	89.9	45
15	CPHs based on METAC and PPy	E. coli S. aureus	Almost all S. aureus and E. coli were killed	Mechanism of cationic fixation	1.592		46
16	Ag ₃ PO ₄ -rGO nanocomposite- coated textiles	E. coli S. aureus	Antibacterial rates against E. coli and S. aureus were higher than 99 %	Sterilization of Ag ⁺ and ROS	1.31	86.8	47
17	SA/PVA/HACC hydrogel foam		After 15 days, bacterial coverage on gel surface was lowest	Mechanism of cationic fixation	2.12		48
18	GO/Mxene aerogel	E. coli	No colonies were found after treatment	Sterilizing with high temperature	1.27	90.7	16
19	Hierarchically porous radiation-absorbing hydrogel (hp-RAH)	S. aureus E. coli		Bactericidal effect of Ag nanoparticles	1.983	95	49
20	Ag@MXene/PAN	E. coli	Antibacterial efficiency at 12 h, 18 h and 24 h reached 85.4 %, 98.8 % and 99.9 %, respectively	Sterilization effect of Ag ⁺	2.08	92.4	50
21	MoS₂@PEI/MCE membrane	Artificial colonies	The agar plate method showed good antibacterial activity	Photothermal synergistic antibacterial effect		92 (3.7 sun)	51
22	PPy origami	Bacteria in Colorado River Water	Bacteria removed from the Colorado River		2.12	91.5	52

Table S2(continued)

Num.	Material	Bacteria species	Antibacterial effect	Method	RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.
23	Carbon and Ag ⁺ loaded on pumice (P- C-Ag ⁺)	E. coli	Almost all E. coli were killed	Sterilization effect of Ag $^{\mathrm{+}}$	1.395	88.8	53
24	All-fiber porous cylinder-like foam (AFPCF)	S. aureus; MRSA; S. epidermidis; E. coli	within 10 min of irradiation,99.86% E. coli, 99.91% S. epidermidis, 99.96% S. aureus, and 99.98% MRSA were killed	Sterilization effect of ROS	3.6		54
25	Ti-Ag-O nanoporous	E. coli S. aureus	Ti-Ag-O significantly inhibited the reproduction of E. coli and S. aureus	Sterilization effect of Ag ⁺	2.27	72	55
26	Interfacial-heating- based solar steam sterilization device	Bacillus subtilis (B.S); CC09; Bacillus cereus (B.C.); Bacillus stearothermophilus (B.St.)	For all kinds of bacterial spores, it achieved over 8 LRE	Sterilizing with high temperature	1.21	80	56
27	MnCDs@PPy	Gram-positive (Escherichia coli, Bacillus subtilis); Gram-negative (Staphylococcus aureus, Staphylococcus aureus)	After purification, negligible colonies were seen on the surface plate	Antibacterial activity of oxidative stress	1.68	96.4	57
28	KGM / Fe-MOF / PVA network	E. coli Coliform	E. coli and Coliform reduced to below US drinking water kit levels		3.2	90	26
29	Carbonized corncobs (C-corncobs)	Multiple colonies incubated in actual seawater	No colonies formed on agar plates after seawater purification		1.358	86.7	58
30	Interfacial evaporator within a solar vacuum tube	E. coli G. stearothermophilus biological	After cultured at 56 °C for 24 h, the sterilization was successful	Sterilizing with high temperature		49	59

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
1	GO/MXene aerogel	The initial concentration ($\mu g L^{-1}$):	lon rejection rate was 99. 9 % after	Solar driven water	1.27	90.7	16
		Mn ⁶⁺ =8×10 ⁶ , Cd ²⁺ =8×10 ⁵ , Pb ²⁺ =7×10 ⁵ ,	purification	purification			
		Cu ²⁺ =2×10 ⁵ , Ni ²⁺ =9×10 ⁴ ,					
		Zn ²⁺ =2×10 ⁵ , Fe ²⁺ =2×10 ⁵					
2	3D-structured carbonized	Cu^{2+} , Ni^{2+} and Pb^{2+}	Concentrations of heavy metal ions	Solar driven water	1.51	100.4	60
	sunflower		decreased by 4 ~ 6 orders of magnitude	purification			
	heads						
3	rGO-Ag/SA@PU	Pb ²⁺ , Cu ²⁺ , Cd ²⁺ (1500 mg/L)	Concentrations of all heavy metal ions	Solar driven water	2.02	91	61
			were less than 0.1 mg / L	purification			
4	Meat and bonemeal	Pb ²⁺ (1mg/L), Cu ²⁺ (2mg/L), Zn ²⁺	Concentrations of the four ions	Solar driven water	1.48	131.2	62
	biochar (MBB)	(5mg/L) and Cd ²⁺ (0.1mg/L)	decreased by about 3 orders of	purification			
			magnitude				
5	Poly(N-isopropyl	Pb ²⁺ =25ppm	After the first treatment, the Pb ²⁺	Absorbing pure water			63
	acrylamide) hydrogel		concentration was 3.7 ppm and 0.012	while removing harmful			
			ppm after the second cycle	impurities			
6	Carbonized loofah sponge	Pb ²⁺ , Cu ²⁺ , Cr ³⁺ (5000 mg/L)	All three ions reduced by 4 orders of	Solar driven water	1.36	83.7	17
			magnitude	purification			
7	KGM / Fe-MOF / PVA	Cd ²⁺ , Cr ³⁺ , Cr ⁶⁺ , Cu ²⁺ , Ni ²⁺ , Ag ⁺ , Zn ²⁺ ,	Total concentration of heavy metal	Adsorption and solar	3.2	90	26
	network	Pb ²⁺ , Se ²⁺ , As ⁵⁺ , Hg ²⁺ (>10 ⁴ ppb)	ions decreased by 6 \sim 9 orders of	distillation			
			magnitude				

Table S3. Removal heavy metals of SDIE

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
8	STA-EGaIn/lignin-CNC	Zn ²⁺ , Ni ²⁺ , Cu ²⁺ , Fe ³⁺	The ion removal rate was 99 % after	Solar distillation	1.29	94	64
	aerogel (SLC aerogel)		treatment				
9	Chemically-treated	Cu^{2+} , Pb^{2+} , Cd^{2+} , Zn^{2+} , Ni^{2+} ($0.1 \text{mol } \text{L}^{-}$	The adsorption capacity of carbonized	Adsorption	1.85		65
	carbonized wood	1)	wood for various metal ions was Cu ²⁺				
			$> Pb^{2+} > Cd^{2+} > Zn^{2+} > Ni^{2+}$				
10	Gold nanostructure with	Hg ²⁺ , Cd ²⁺ ,Ag ⁺	The concentration of heavy metal ions	Solar distillation	2.7	79.3	66
	the shape of a trepang		drop to 0.01 mg L ⁻¹ after purification				
	(nano-trepang)						
11	PDA/CB@PP non-woven	Cu ²⁺ , Fe ³⁺ Sr ²⁺ , Zn ²⁺	The rejection rate of ions exceeds 99.9 %	Solar distillation	1.68	91.5	67
	fabrics						
12	Carbon nanofiber	Ba ²⁺ , Cu ²⁺ , Mn ²⁺ , and Ni ²⁺ (100 mg	Removal rates of ions were higher than	Solar distillation	1.72	92.5	68
	decorated carbonized	L ⁻¹)	99.8 %				
	loofah						
	(CL-CNF)						
13	Cellulose	The waste steel treatment solution	The concentration of Fe ³⁺ in the collected	Solar distillation	1.58	90	69
	nanofibril/polylactic	(pH≈ 0.19) with an Fe ³⁺ concentration	steam water (pH≈ 7)				
	acid/polyaniline	of up to 97600 mg/L	was reduced to 9.8 mg/L				
	(CNF/PLA/PANI) aerogel						
14	Wood/Fe ₂ O ₃ /CNT	Cr^{3+} , Pb^{2+} , Zn^{2+} , and Cu^{2+}	The retention rates of four ions were all	Solar distillation	1.42	87.2	70
			above 99 %				
15	Ti ₃ C ₂ /MoS ₂	The Cu ²⁺ , Cr ³⁺ (mg/L), Cd ²⁺ (109 mg/L),	After purification, the concentrations of	Solar distillation	1.36	87.2	71
	nanocomposite	Zn ²⁺ (82.6 mg/L), and Pb ²⁺ (153 mg/L)	$Cr^{3 *}, Cd^{2 *}, Zn^{2 *}$ and $Pb^{2 *}$ were 0.06,				
			0.061, 0.11 and 8.3 mg / L, respectively				

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
16	Carbon nanotubes	Cr^{2+} , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ (1000mg/L)	The concentration of heavy metal ions	Solar distillation	2.22	93.2	72
	aerogel-coated wood		decreased significantly after treatment				
	(CACW)						
17	Ultrablack	Cr^{3+} , Cu^{2+} , Ni^{2+} , Zn^{2+} and Pb^{2+}	The concentrations of heavy metal ions	Solar distillation	1.37	87.51	73
	carbon aerogels (CAs)		were below 0.25 mg L^{-1}				
18	vapor generator(cotton	Cu ²⁺ , Cr ³⁺ , Pb ²⁺	After purification, the concentration of Cu ²	Evaporation	1.62		74
	core, polystyrene foam,		$^{\scriptscriptstyle +}$ was 0.066 mg / L, the concentration of	purification effect			
	black nonwoven cotton		Cr^{3+} and Pb^{2+} was < 0.01 mg / L				
	film)						
19	Composite functional	Pb ²⁺ (24000 mg/L), Cu ²⁺ (31750	Three kinds of ion concentration were less	Solar distillation	1.42	82	75
	layer of polyetherimide	mg/L) and Cd $^{2+}$ $(41250 mg/L)$	than 0.1 ppm, the removal rates were				
	modified CER and		more than 99.9 %				
	PEDOT-based conductive						
	ink						
20	MXene/PVA modified PC	Cr ³⁺ , Cu ²⁺ , Pb ²⁺ , Zn ²⁺	All the heavy metal ion concentrations	Solar distillation	3.38	132.9	76
	(MPCF)		were lower than				
			WHO requirement				
21	CNT/starch hybrid	Fe ³⁺ , Cu ²⁺ , Ni ²⁺ , Cr ⁶⁺ , Cd ²⁺ ,Zn ²⁺	The ion concentration decreased by 5-6	Solar distillation	2.77	88	77
	biohydrogel		orders of magnitude				
22	Pt ₃ Ni-S-deposited	Cu ²⁺ , Cd ²⁺ , Cr ³⁺ , Ba ²⁺ , Pb ²⁺ (100mg/L)	After purification, the concentrations of	Solar distillation	1.27	80	10
	Teflon (PTFE) membrane		Cu ²⁺ , Cd ²⁺ , Cr ³⁺ , Ba ²⁺ , Pb ²⁺ were 0.018,				
			0.023, 0.036, 0.038, 0.051 mg / L,				
			respectively				

Table S3(continued)

	Composition	Species of ions	Removal effect	Removal	RE	EE	Ref.
				method	(kg m ⁻² h ⁻¹)	(%)	
23	Carbonized aerogel	Cu ²⁺ , Zn ²⁺ , Pb ²⁺ , Cd ²⁺ (5g/L)	After purification, the ion concentrations	Solar distillation	2.1		78
			of Cu ²⁺ , Zn ²⁺ , Pb ²⁺ and Cd ²⁺ were 0.5, 2,				
			0.01 and 0.1 mg / L, respectively				
24	HHNDL membrane	Fe ³⁺ , Cu ²⁺ , Cr ⁶⁺	Ion rejection rate is close to 100 %	Solar distillation	1.657	86.6	39
25	Graphene assembled	Cu ²⁺ , Mn ²⁺ , Cd ²⁺	The ion concentration decreased to less	Solar distillation	1.4	87.9	79
	porous fiber-based Janus		than 10 mg / L, and the ion retention rate				
	membrane		was about 99.9 %				
26	Carbon cloth	Cr ³⁺ , Cd ²⁺ , Ni ²⁺ , Ag ⁺ , Pb ²⁺ , Cu ²⁺	Ion rejection rate of ion solution is close to	Solar distillation	1.42	93	6
	nanocomposite with a	Pd ²⁺ (1000ppm)	100 %				
	biomimetic pelargonium						
	hortorum-petal-like						
	surface						
	(CC-BPHPLS)						
27	PPy-compounded air-laid	Na ⁺ , Cu ²⁺ , Pb ²⁺ and Cd ²⁺	The ion rejection of metal ions	Solar distillation	2.0	93.5	80
	paper		can reach 99.99%				
	(PPy-AP)						
28	Solar evaporator	Co^{2+} , Ni^{2+} , Cu^{2+} and	Retention rates of four ions were above	Solar distillation	2.09	80.4	25
	constructed by poly(vinyl	Zn^{2+} (1000mg/L)	99.9 %				
	alcohol) and sodium						
	lignosulfonate (SLS)						
29	Graphene/MoO _{3-x} coated	Pb ²⁺ (116mg/L),Cu ²⁺ (112mg/L),	After purification, the ion concentrations	Solar distillation	1.5	95	81
	porous	Cd ²⁺ (102mg/L), Cr ³⁺ (104mg/L) and	of Pb ²⁺ , Cu ²⁺ , Cd ²⁺ , Cr ³⁺ , Zn ²⁺ were 0.001,				
	Nickel	Zn ²⁺ (106mg/L)	0.0002, 0.0008, 0.002, 0.014mg / L,				
	(Ni-G-MoO _{3-x})		respectively				

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
30	PVA hydrogel-based 3D	Na ⁺ , K ⁺ , Li ⁺ , Cu ²⁺ , Mg ²⁺	After desalination, the above	Solar distillation	2.22		19
	evaporator		ion concentration decreased by		(3.5 wt % NaCl)		
			3 orders of magnitude				
31	Situ-polymerized nickel	Cu^{2+} , Pb^{2+} , Cd^{2+} and	After purification, the	Solar distillation	1.74	90	82
	foam (IPNF)	Cr ³⁺ (1000mg/L)	concentrations of Cu ²⁺ , Pb ²⁺ ,				
			Cd ²⁺ , Cr ³⁺ were 0.0085, 0.0063,				
			0.0042, 0.0033mg / L,				
			respectively				
32	Corn straw-based	Cu ²⁺ , Cr ⁶⁺ , Zn ²⁺ (400 mg/L)	Three metal concentrations	Adsorption	1.44	88	83
	microcrystalline		were reduced by 95 %, 88 %				
			and 90 %, respectively				
	Oxidized microcrystalline	Cu ²⁺ , Cr ⁶⁺ , Zn ²⁺ (400 mg/L)	After purification, the ion	Adsorption	1.36	84	
	cellulose		concentrations decreased by 99				
			%, 89 % and 92 %, respectively				
33	Carbon	Cu ²⁺ (6.47 mg/L), Ni ²⁺ (6.9 mg/L),	The removal rate of Cr ⁶⁺ was	Solar distillation	1.34	85.71	84
	nanotube/polyvinyl	$Cr^{6+}(7.28 \text{ mg/L})$, and $Zn^{2+}(7.97 \text{ mg/L})$	more than 99.86 %, and the				
	alcohol porous composite	mg/L)	removal rate of other ions was				
	evaporator		more than 96.81 %				
34	Hydrophobic soot coated	Ni^{2+} , Cu^{2+} , Zn^{2+} , and Pb^{2+} (1000	Concentrations of metal ions	Solar distillation	1.308	91.2	85
	cloth / hydrophilic cloth	mg/L)	after evaporation were lower				
	double layer on PE coated		than China standard limits				
	cellulose aerogel						

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
35	Copper-zinc-tin-selenide	Cu ⁺ , Zn ²⁺ , Sn ⁴⁺ and Se ^{2–}	After evaporation, there was no	Solar distillation	1.528	86.4	3
	(CZTSe) nanocarambolas		presence of Cu or Se element				
36	Cu-CAT/Wood	Cu ²⁺ and Cd ²⁺ (100 mg/L)	Concentrations of Cu^{2+} and Cd^{2+}	Solar distillation	1.8		86
			were lower than 1 mg /L				
37	Carbon hybrid aerogel (CHA)	Fe ³⁺ , Cu ²⁺ ,	Concentrations of metal ions	Solar distillation	2.1		87
		Cd ²⁺ , Pb ²⁺ , Zn ²⁺ , Ni ²⁺ , Al ³⁺ ,	decreased by three orders of				
		Se ²⁺ , Mn ²⁺ , Sn ³⁺ , V ⁵⁺ , and Li ⁺	magnitude				
38	CuO@PDA/PB	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cu ²⁺ and	After distillation, the above ion	Solar distillation	1.39	87.1	88
		Cr ³⁺	concentrations decreased				
			significantly and were lower than				
			WHO standards				
39	Nanofibrous hydrogel-	Cd ²⁺ , Cu ²⁺ , Ni ²⁺ , Pb ²⁺ , Zn ²⁺ (The removal was	Solar distillation	1.85	95.4	89
	reduced graphene oxide	100 mg/L.)	consistently more than 99.5%				
	(NHrG) membrane						
40	3D interconnected	Cu^{2+} , Ni^{2+} , Cd^{2+} , Zn^{2+} (5g/L)	After purification, the ion	Solar distillation	10.9		90
	porous carbon foam		concentrations of Cu ²⁺ , Ni ²⁺ , Cd ²⁺		(natural convection)		
			and Zn ^{2 +} were 0.5, 1, 0.1 and 2 mg				
			/ L, respectively				
41	PPY/BTA hydrogel	Wastewater containing Ag-	Water collected by evaporation	Solar distillation	1.9	89	91
		NPs	was free of pollutants				
42	N,S-GO/PPy foam	Fe ³⁺ , Cu ²⁺ , Cr ⁶⁺ , Na ⁺ , K ⁺	The concentration of main ions in	Solar distillation	1.32	90.5	92
			wastewater decreased by 2 to 6				
			orders of magnitude				

Table S3(continued)	
---------------------	--

	Composition	Species of ions	Removal effect	Removal method	REe	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
43	PSN-functionalized reduced	Hg ²⁺ (200 ppb),Cd ²⁺ , Pb ²⁺ ,	Ion rejection rate close to 100 %,	Solar distillation	1.55	90.8	93
	graphene oxide (PSN-rGO)	Ni ²⁺ ,Cu ²⁺ ,Zn ²⁺	Hg ^{2 +} concentration below 1 ppb				
	aerogel						
44	Ti ₃ C ₂ T _x	Cr ³⁺ , Cu ²⁺ , Pb ²⁺ , Zn ²⁺	The rejection of metal ions was	Solar distillation	3.94	135.6	94
	MXene/GO/polyaniline		about 99.9 %				
	hybrids(MGP)						
45	MnCDs@PPy	Ca ²⁺ , Pb ²⁺ , Cr ³⁺ , Mg ²⁺ , Ti ³⁺ ,	All above ions are excluded	Solar distillation	1.68	96.4	57
		Hg ²⁺ , Fe ³⁺ ,Zn ²⁺					
46	PPy@PEI@A-CNF aerogel	Mn^{2+} , Co^{2+} , Cu^{2+} and	After purification, the ion	Solar distillation	1.66	94.62	95
		Cr ³⁺ (500mg/L)	concentrations of Mn^{2+} , Co^{2+} , Cu^{2+}				
			and Cr ^{3 +} were 0.42, 0.27, 0.58 and				
			0.39 mg / L, respectively				
47	MoS ₂ /SA@melamine foam	Pb^{2+} , Cu^{2+} , Fe^{3+} and	After purification, the ion	Adsorption	1.92 (3.5wt%NaCl	90 (3.5w	96
		Zn ²⁺ (200mg/L)	concentrations of Pb ²⁺ , Cu ²⁺ , Fe ³⁺)	t%NaCl)	
			and Zn ^{2 +} were 0.08, 66.9, 98.4 and				
			107 mg / L, respectively				
48	Situ-polymerized MnO ₂	Ca ²⁺ , Pb ²⁺ , Cr ³⁺ , Mg ²⁺	Ca ²⁺ decreased obviously, Pb ²⁺ , Cr ³	Solar distillation	1.78	90.6	97
	nanowires/chitosan		*, Mg ²⁺ were removed successfully				
	hydrogel(SPM-CH)						
49	All-fiber porous cylinder-like	Na ⁺ , Mg ²⁺ , K ⁺ , Ca ²⁺ , and Pb ²⁺	Ion concentration decreased to 10-	Solar distillation	3.6		54
	foam (AFPCF)	(10 ³ mg/L, simulated	1 mg / L and removal efficiency				
		seawater)	reached 99.9 %				
50	SiO ₂ /MXene/HPTFE	Cu ²⁺ , Mn ²⁺ , Cd ²⁺	Ion rejection after purification was	Solar distillation	1.53	85.6	98
	Janus membrane		99.9 %				

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
51	PDA-t@PU	Ni^{2+} , Cu^{2+} , Zn^{2+} and Pt^{2+}	Ion content decreased to about 10 ⁻	Solar distillation	2.5–3.6		99
			² mg / L after purification				
52	Cu@CuO/CG-aero Janus	Cd ²⁺ ,Pb ²⁺ ,Cr ²⁺ (20ppm)	About 99.999 % of metal ions	Solar distillation	1.32	88	34
	membrane		were removed after solar				
			evaporation				
53	MoS ₂ /C @ PU sponge	Ni ²⁺ (271mg/L), Hg ⁺ (200 ppb)	Ni ^{2 +} concentration decreased	Solar distillation	1.95	88	100
			to 1 mg / L, and Hg $^{2+}$				
			concentration decreased to 1				
			ppb				
54	MXene/LSC hydrogels	Pb ²⁺ , Cu ²⁺ , Zn ²⁺ (5000 mg/L)	Pb ²⁺ , Cu ²⁺ , Zn ²⁺ concentrations	Solar distillation	2.73	92.3	30
	(MLH)		decreased to 0.004, 0.138,				
			1.363 ppm, respectively				
55	SA/MNP@rGO aerogel	Mn ²⁺ , Cu ²⁺ , Ba ²⁺ , Ni ²⁺ (100 mg/L)	Concentrations of Mn ²⁺ , Ba ²⁺ ,	Solar distillation	2.64	93.9	101
			Cu ²⁺ , Ni ²⁺ decreased to 0.1389,				
			4.53, 0.0504, 0.0564μg / L,				
			respectively				
56	Co-Sn alloy@PTFE	Mn^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} and	The ion retention rate was over	Solar distillation	1.28	89	102
		Cd ²⁺ (100mg/L)	99.5 %				
57	Polyethyleneimine	Cu ²⁺ , Zn ²⁺ , Ni ²⁺ , Co ²⁺ (100mg/L)	Cu ² +, Zn ² +, Ni ² +, Co ² +	Solar distillation	1.9	91.4	103
	crosslinked carbon		concentrations decreased to				
	nanotubes/cellulose		0.4ppb, 0.2ppb, 0.1ppb,				
	nanofibers		0.02ppb, respectively				
	(PEI@CNTs/CNFs)						

	Composition	Species of ions	Removal effect	Removal method	RE	EE	Ref.
					(kg m ⁻² h ⁻¹)	(%)	
58	Foam-flamed-wood	Fe ³⁺ , Cr ³⁺ , Cu ²⁺	Removal of these ions was	Solar distillation	3.92		104
	(F-F-wood)		close to 100 %				
59	WO ₃ decorated on nickel	Cu ²⁺ (10 ⁶ µg/L),Mn ²⁺ (10 ⁵ µg/L),Cd ²⁺	The concentrations of Cu ²⁺ , Mn ²⁺ and	Solar distillation	1.50	88	105
	foam	(10 ⁴ µg/L)	$\rm Cd^{2 +}$ decreased to below 0.87, 1.47 and				
	(WO _{3-x} /NF)		0.08 mg / L, respectively				
60	a-CNTs-PPy-C	Zn ²⁺ , Sr ²⁺ , Cu ²⁺ ,Fe ³⁺	The retention rate of ions exceeded	Solar distillation	1.61	91.2	106
			99.9 %				
61	Activated carbon-juncus	Cu^{2+} , Cd^{2+} , Pb^{2+} , and Zn^{2+}	The concentrations of Cu^{2+} , Cd^{2+} , Pb^{2+} ,	Solar distillation	2.23		37
	(AC-JE)		Zn^{2+} decreased to 0.020, 0.0060, 0.076,				
			0.060 mg / L, respectively				
62	Semi-	Pb ²⁺ , Cd ²⁺ , Ag ⁺ , Cu ²⁺ ,	Mixed heavy metal solution	Solar distillation	1.41	90.56	107
	coke/polydopamine@pho	Zn ²⁺ (1000mg/L)	have almost disappeared				
	tothermal melamine						
	sponge (SPMS)						
63	PDA-modified biochar	Cd ²⁺ , Cu ²⁺ , Ni ²⁺ , Pb ²⁺ , and Zn ²⁺	99.5 % of heavy metal ions can be	Solar distillation	1.65	90.5	108
	composite		removed				
	membrane						
64	Yolk-like non-	Cd ³⁺ , Co ²⁺ , Cu ²⁺ , Mn ²⁺ , Ni ²⁺ , and	The removal rate of heavy metal ions	Solar distillation	1.45	97	109
	stoichiometric nickel	Zn ²⁺ (100mg/L)	was 99.9 %				
	sulfide-based Janus						
	hydrogel						

Table S3(continued)									
	Composition	Species of ions	Removal effect	Removal method	RE (kg m ⁻² h ⁻¹)	EE (%)	Ref.		
65	Superhydrophobic silicone sponge with multi-walled carbon	Cu ²⁺ (1280mg/L), Zn ²⁺ (1300 mg/L)	The concentration of Cu ²⁺ and Zn ²⁺ decreased to 0.087 and 0.125 mg / L, and the ion removal rate was above	Solar distillation	1.72	92.4	21		
	nanotubes (MWCNTs)		99.99 %						

References:

- 1. H. Z [·] L. R. Ying, H. Huang, X. Qu, C. Wang, X. F. Wang, F. Duan, S. L. Lu and M. L. Du, *ACS Appl. Energ. Mater.*, 2021, **4**, 3563–3572.
- 2. T. D, Y. Lu, D. Q. Fan, H. H. Min, S. Ding and X. F. Yang, *Energy Technology*, 2020, **8**, 2000567.
- W. Q, Y. W. Yang, J. Q. Zhao, Y. Han, M. M. Ju and X. T. Yin, *Chem. Eng. J.*, 2019, 373, 955–962.
- 4. Y. C, J. Yang, X. H. Jia, Y. Li, S. Z. Wang and H. j. Song, *ACS Appl. Mater. Inter*faces, 2020, **12**, 47029–47037.
- H. M, Y. L. Xu, X. S. Han, T. J. Sun, X. F. Fan, B. W. Lv, Z. L. Pan, Y. X. Song and C. W. Song, *Int. J. Energ. Res.*, 2021, 45, 21476–21486.
- Z. G, Y. Xu, J. Wang, Z. H. Chen, J. C. Yin, Z. X. Zhang, J. M. Huang, J. W. Qian and X. B. Wang, ACS Appl. Mater. Interfaces, 2021, 13, 27129–27139.
- 7. J. Y, W. M. Zhang, Q. Su, J. Han and J. F. Gao, *J. Colloid. Interf. Sci.*, 2022, **612**, 66–75.
- K. C, A. Y. Wei, P. F. Wang, Y. F. Gu, X. Y. Wang, X. J. Mu, Y. Z. Tian, J. H. Zhou, Z. Q. Sun, Y. L. Chen, J. H. Zhang, J. Liu and L. Miao, *Sol. Rrl.*, 2021, 5, 2000782.
- 9. Z. L, X. L. Wang, Y. Wu, H. R. Guo, X. L. Zhang, Y. X. Yang, H. B. Mu and J. Y. Duan, *ACS Appl. Mater. Inter*faces, 2021, **13**, 10902–10915.
- C. Y, T. Y. Ma, W. Guo, H. M. Lin, F. Zhang, H. X. Liu, L. Zhao, Y. Zhang, Y. Z. Wang,
 Y. T. Cui, J. X. Zhao and F. Y. Qu, ACS Appl. Mater. Interfaces, 2020, 14, 27140–27149.
- 11. L. G, L. Song, Y. P. Tian, P. Mu and J. Li, J. Mater. Chem. A, 2021, 9, 23117–23126.
- 12. L. W, Q. M. Wang, S. X. Song, Y. M. Li, F. F. Jia, T. Feng and N. Hu, *Desalination*, 2022, **525**, 115483.
- Y. Qiao, Y. Gu, Y. S. Meng, H. X. Li, B. W. Zhang and J. Y. Li, *Nucl. Sci. Techn.*, 2021, 32, 135.
- 14. D. W, H. Y. Peng and S. H. Fu, *Chem. Eng. J.*, 2021, **426**, 131818.
- P. X, F. Ni, N. X. Qiu, C. Zhang, Y. Liang, J. C. Gu, J. Y. Xia, Z. X. Zeng, L. P. Wang, Q. J. Xue, T. Chen, *Nano Energy*, 2020, **68**, 04311.
- 16. A. G, X. Ming, Q. Zhang, Z. Z. Guo, F. Yu, B. F. Hou, Y. Wang, K. P. Homewood and X. B. Wang, *Carbon*, 2020, **167**, 285–295.
- 17. X. W, Y. Lu, D. Q. Fan, H. Yang, H. L. Xu, H. H. Min and X. F. Yang, *Sustain. Mater. Techno.*, 2020, **25**, e00180.
- S. H, Y. J. Long, H. Yi, J. Q. Chen, J. H. Wu, Q. F. Liao, H. W. Liang, H. Z. Cui, S. C. Ruan and Y. J. Zeng, *J. Mater. Chem. A*, 2019, *7*, 26911–26916.
- 19. N. H, L. Li, B. Jiang, K. W. Yu, Q. Zhang, H. T. Zhang, D. W. Tang and Y. C. Song, *Adv. Funct. Mater.*, 2021, **31**, 2104380.
- 20. D. H, D. S. Li, C. W. Guo and C. L. Huang, ACS Appl. Energ. Mater., 2021, 4, 1752–1762.
- 21. L. L, T. Hu, Y. F. Yang and J. P. Zhang, J. Mater. Chem. A, 2020, 8, 14736–14745.
- G. Z, J. X. He, P. Mu, H. J. Wei, Y. N. Su, H. X. Sun, Z. Q. Zhu, W. D. Liang and A. Li, Sol. Energ. Mat. Sol. C., 2019, 201, 110111.
- 23. M. H, F. He, J. Zhang, Z. X. Wang, X. C. Wu, Y. Y. Zhou, L. F. Jiang, S. Q. Peng and Y.

X. Li, Nano Energy, 2020, **71**, 104650.

- J. Z, H. Y. Zhao, Z. L. Yu, L. F. Chen, H. J. Zhan, H. W. Zhu, J. Huang, L. A. Shi and S. H. Yu, *Cell Reports Physical Science*, 2020, 1, 100074.
- 25. N. L, L. Hao, H. Y. Bai, P. P. He, R. Niu and J. Gong, *J. Colloid. Interf. Sci.*, 2022, **608**, 840–852.
- 26. H. L, Y. H. Guo, F. Zhao, X. Y. Zhou, W. Shi and G. H. Yu, *Adv. Mater.*, 2020, **32**, 1907061.
- 27. H. L, F. Gong, W. B. Wang, J. G. Huang, D. W. Xia, J. X. Liao, M. Q. Wu and D. V. Papavassiliou, *Nano Energy*, 2019, **58**, 322–330.
- 28. D. W, F. C. Xu, X. Li, Y. Li and J. Q. Sun, CCS Chemistry, 2021, 3, 2494–2506.
- 29. W. B, Y. K. Fan, P. Mu, Y. N. Su, Z. Q. Zhu, H. X. Sun, W. D. Liang and A. Li, *Sol. Energ. Mat. Sol. C.*, 2020, **206**, 110347.
- 30. Y. L, D. Q. Fan, H. Zhang, H. L. Xu, C. H. Lu, Y. C. Tang and X. F. Yang, *Appl. Catal. B-Environ.*, 2021, **295**, 120285.
- 31. Y. L, Z. C. Chen, Q. Li and X. M. Chen, *ACS Appl. Mater. Inter*faces, 2021, **13**, 40531–40542.
- J. L. Y, J. X. Chen, B. Li, Z. Y. Ye, D. L. Liu, D. Ding, F. Qian, N. V. Myung, Q. Zhang and Y. D. Yin, ACS Nano, 2020, 14, 17419–17427.
- 33. Y. L, X. H. Bai, F. Y. Zhang, Y. Q. Xu, S. F. Wang and G. S. Fu, *Environ. Sci-Water Res.*, 2019, **5**, 2041–2047.
- C. D, Q. Zhao, Y. Z. Jia, J. S. Yuan, G. M. Song, X. Zhou, S. S. Sun, C. Zhou, L. P. Zhao and S. Y. Yang, *Chem. Eng. J.*, 2020, **387**, 124131.
- S. J, Z. Zhang, H. N. Chen, H. Qi, Y. L. Chen, Y. J. Chen, Q. L. Deng and S. Wang, Foods, 2021, 10, 3087.
- Y. Zhang, D. W. Zhao, F. Yu, C. Yang, J. W. Lou, Y. M. Liu, Y. Y. Chen, Z. Y. Wang, P. Tao, W. Shang, J. B. Wu, C. Y. Song and T. Deng, *Nanoscale*, 2017, 9, 19384–19389.
- L. R, Q. Zhang, X. F. Xiao, Y. L. Chen, L. J. Xia, G. M. Zhao, H. J. Yang, X. B. Wang, W. L. Xu, *Carbon*, 2020, **156**, 225–233.
- 38. X. J. Zha, X. Zhao, J. H. Pu, L. S. Tang, K. Ke, R. Y. Bao, L. Bai, Z. Y. Liu, M. B. Yang and W. Yang, *ACS Appl. Mater. Inter*faces, 2019, **11**, 36589–36597.
- H. Z, Y. W. Yang, Z. Y. Yin, J. Q. Zhao, X. T. Yin, N. Li, D. D. Yin, Y. N. Li, B. Lei, Y. P. Du and W. X. Que, *Mater. Horiz.*, 2018, 5, 1143–1150.
- 40. Z. W, J. L. Xu, C. Chang, C. Y. Song, J. B. Wu, W. Shang, P. Tao and T. Deng, ACS Omega, 2019, 4, 16603–16611.
- 41. J. X, X. Y. Wang, C. F. Ma, T. He, H. S. Qian, B. Wang, J. W. Liu and Y. Lu, *J. Mater. Chem. A*, 2019, **7**, 16696–16703.
- 42. S. C, X. H. Wu, D. Ghim, Q. S. Jiang, S. Singamaneni and Y. S. Jun, *Nano Energy.*, 2021, **79**, 105353.
- 43. G. X, S. H. Wu, H. C. Yang, Y. K. Tian, B. Y. Gong, H. W. Wan, Y. Wang, T. S. Fisher, J. H. Yan, K. F. Cen, Z. Bo and K. Ostrikov, *Matter-Us.*, 2019, **1**, 1017–1032.
- 44. H. G, C. Y. Wen, J. Yang, Q. S. Li, X. Y. Zhang, X. J. Sui, M. Y. Cao and L. Zhang, *Chem. Eng. J.*, 2021, **421**, 130344.
- 45. H. S, Z. Qin, Y. N. Tang, S. Y. Yin, L. X. Yang, M. W. Xu and Z. N. Liu, *ACS Appl. Mater. Inter*faces, 2021, **13**, 19467–19475.

- 46. B. L. Peng, Y. J. Gao, Q. Q. Lyu, Z. J. Xie, M. M. Li, L. B. Zhang and J. T. Zhu, ACS Appl. Mater. Interfaces, 2021, **13**, 37724–37733.
- 47. Z. X. L. Noureen, Y. J. Gao, M. M. Li, M. Hussain, K. Wang, L. B. Zhang and J. T. Zhu, *ACS Appl. Mater. Inter*faces, 2020, **12**, 6343–6350.
- 48. L. L, N. Li, C. Guo, J. T. He, S. X. Wang, L. M. Yu, M. Wang, P. Murto and X. F. Xu, *Chem. Eng. J.*, 2022, **431**, 134144.
- 49. X. J. Z, S. Meng, C. Wu, X. Zhao, M. B. Yang and W. Yang, *Nano Letters*, 2021, **21**, 10516–10524.
- 50. H. J. Liu, Y. Liu, L. M. Wang, X. H. Qin and J. Y. Yu, *Carbon*, 2021, **177**, 199–206.
- M. Z, Y. L. Li, Y. S. Xu, L. L. Chen, T. Jiang, W. C. Jiang, S. G. Yang and Y. Wang, J. Mater. Chem. A, 2019, 7, 26769–26775.
- 52. Z. L, W. G Li, K. Bertelsmann and D. E. Fan, Adv Mater., 2019, 31, 1900720.
- 53. Y. J, J. Y. Li, X. Zhou, J. L. Mao, Y. J. Chen, H. X. Sun, X. F. Deng and C. Z. Gao, *Int. J. Energ. Res.*, 2021, **45**, 20132–20142.
- 54. W. Z, H. X. Li, M. Li, Y. Li, R. T. K. Kwok, J. W. Y. Lam, L. Wang, D. Wang and B. Z. Tang, *Adv. Mater.*, 2021, **33**, 2102258.
- S. C, D. Li, R. R. Huang, C. R. Xue, P. F. Li, Y. S. Li, Q. Chang, H. Q. Wang, N. Li, S. P. Jia, S. L. Hu and J. L. Yang, *Ceramics International*, 2021, 47, 19800–19808.
- M. D, J. L. Li, G. X. Lv, L. Zhou, X. Q. Li, L. Bertoluzzi, C. H. Liu, S. N. Zhu and J. Zhu, Adv. Mater., 2018, 30, 1805159.
- 57. X. W, M. S. Irshad, A. Abbas, F. Yu, J. H. Li, J. Y. Wang, T. Mei, J. W. Qian, S. L. Wu and M. Q. Javed, *Carbon*, 2021, **176**, 313–326.
- H. X, T. J. Chen, X. Qiao, S. Q. Hao, Z. Z. Wu, D. Sun, Z. Y. Liu, F. Cao, B. H. Wu and X. L. Fang, ACS Appl. Mater. Interfaces, 2020, 12, 50397–50405.
- 59. P. T, C. Chang, J. L. Xu, B. W. Fu, C. Y. Song, J. B. Wu, W. Shang and T. Deng, *ACS Appl. Mater. Inter*faces, 2019, **11**, 18466–18474.
- 60. W. Z, P. Sun, I. Zada, Y. X. Zhang, J. J. Gu, Q. L. Liu, H. L. Su, D. Pantelić, B. Jelenković and D. Zhang, ACS Appl. Mater. Interfaces, 2020, **12**, 2171–2179.
- C. K. Liu, C. J. Cai, F. Q. Ma, X. Z. Zhao and H. Ahmad, J. Colloid. Interf. Sci., 2020, 560, 103–110.
- H. T. Qiao, B. W. Zhao, X. D. Suo, X. M. Xie, L. F. Dang, J. Yang and B. W. Zhang, Global Challenges, 2022, 6, 2100083.
- 63. S. O, X. H. Xu, N. Bizmark, C. B. Arnold, S. S. Datta and R. D. Priestley, *Adv. Mater.*, 2021, **33**, 2007833.
- 64. C. C, Z. C. Wei, Y. Z. Huang, Y. Q. Wang and Y. Fu, Nano Energy, 2021, 86, 106138.
- 65. H. Z, Q. Hou, W. Zhang, Q. Chang, J. L. Yang, C. R. Xue and S. L. Hu, *Sci. Total. Environ.*, 2021, **759**, 144317.
- S. L, Z. M. Huang, X. Cui, Y. P. Wan, Y. F. Xiao, S. Tian, H. Wang, X. Z. Li, Q. Zhao and C. S. Lee, J. Mater. Chem. A, 2020, 8, 10742–10746.
- B. S, S. J. Sun, Y. M. Wang, M. F. A. Afari, H. Y. Mi, Z. H. Guo, C. T. Liu and C. Y. Shen, Sep. Purif. Technol., 2022, 278, 119621.
- 68. B. Y, C. F. Zhang, Y. Liang, L. X. Yang, L. J. Bai, H. W. Yang, D. L. Wei, F. Wang, Q. Y. Wang, W. X. Wang and H. Chen, *Mater. Chem. Phys.*, 2021, **258**, 123998.
- 69. Y. H, S. Li, Y. P. Guan, X. Y. Liu, H. X. Liu, M. S. Xie, L. Zhou, C. Wei, C. B. Yu and Y.

H. Chen, ACS Appl. Polym. Mater., 2020, 2, 4581–4591.

- 70. X. L, W. Li, J. Liu, M. J. Zeng, X. Y. Feng, X. Q. Jia and Z. Z. Yu, *ACS Appl. Mater. Inter*faces, 2021, **13**, 22845–22854.
- 71. N. W, R. Q. Xu, Z. K. Li, X. J. Song, Q. Li, K. Y. Sun, E. Q. Yang, L. K. Gong, Y. L. Sui, J. Tian, X. Wang, M. G. Zhao and H. Z. Cui, *J. Colloid. Interf. Sci.*, 2021, **584**, 125–133.
- 72. Y. G, X. J. Mu, P. F. Wang, J. Q. Shi, A. Y. Wei, Y. Z. Tian, J. H. Zhou, Y. L. Chen, J. H. Zhang, Z. Q. Sun, J. Liu, B. L. Peng and L. Miao, *Sol. Rrl.*, 2020, *4*, 2000341.
- 73. A. D, H. Q. Wang, X. J. Ji, C. Zhang, B. Zhou, Z. H. Zhang and J. Shen, *ACS Appl. Mater. Inter*faces, 2019, **11**, 42057–42065.
- J. L, X. Q. Li, J. Y. Lu, N. Xu, C. L. Chen, X. Z. Min, B. Zhu, H. X. Li, L. Zhou, S. N. Zhu, T. J. Zhang and J. Zhu, *Joule*, 2018, 2, 1331–1338.
- Y. P. C. K. Liu, C. J. Cai, J. Y. Zhang and X. Z. Zhao, J. Environ. Chem. Eng., 2021, 9, 105272.
- 76. X. T, W. Li, X. F. Li, J. Liu, C. J. Li, X. Y. Feng, C. Shu and Z. Z. Yu, *J. Colloid Interf. Sci.*, 2022, **606**, 748–757.
- 77. B. L, Y. L. Xu, Y. Yang, X. F. Fan, Y. L. Yu, C. W. Song and Y. M. Liu, *Desalination*, 2021, **517**, 115260.
- 78. X. C, J. F. Liu, H. Yang, J. Q. Tang, R. Miao, K. Q. Liu and Y. Fang, *Mater. Chem. Front.*, 2021, **5**, 1953–1961.
- 79. H. L, Q. X. Zhou, D. D. Li, B. B. Wang, H. Wang, J. B. Bai, S. H. Ma and G. Wang, *J. Colloid. Interf. Sci.*, 2021, **592**, 77–86.
- X. R, Z. C. Xu, D. Wang, M. F. Zhong and Z. J. Zhang, *Desalination*, 2022, 525, 115495.
- C. L, L. K. Gong, N. Wei, J. Li, J. Y. Shen, R. Q. Xu, Q. Li, J. Tian and H. Z. Cui, Sep. Purif. Technol., 2021, 275, 119139.
- N. A, M. S. Irshad, X. B. Wang, H. R. Li, M. Q. Javed, Y. Xu, L. A. Alshahrani, T. Mei and J. H. Li, *Sol. Rrl.*, 2021, 5, 2100427.
- 83. X. Z, J. Y. Li, Y. J. Jing, H. X. Sun, Z. Q. Zhu, W. D. Liang and A. Li, *ACS Appl. Mater. Inter*faces, 2021, **13**, 12181–12190.
- 84. Q. Q. H. W. Jian, W. Wang and D. Yu, Sep. Purif. Technol., 2021, 264, 118459.
- J. X, F. J. Peng, X. L. Bai, G. P. Feng, X. H. Zeng, M. R. I. Raihan and H. F. Bao, *Sol. Energ. Mat. Sol. C.*, 2021, **221**, 110910.
- 86. M. L, X. Y. Zhu, L. Song, X. F. Zhang and J. F. Yao, *Sep. Purif. Technol.*, 2022, **281**, 119912.
- Y. W, Z. M. Huang, J. L. Liang, Y. F. Xiao, X. Z. Li, X. Cui, S. Tian, Q. Zhao, S. L. Li, and. S. Lee, ACS Appl. Mater. Interfaces, 2021, 13, 31624–31634.
- M. L, R. F. Zhu, Y. Y. Hou, D. Wang, L. P. Zhang, D. Wang and S. H. Fu, *Chem. Eng. J.*, 2021, **423**, 129099.
- 89. L. S, L. L. Zang, S. C. Zhang, C. Finnerty, A. Kim, J. Ma and B. X. Mi, *Chem. Eng. J.*, 2021, **422**, 129998.
- J. L. Li, X. Y. Wang, Z. H. Lin, N. Xu, X. Q. Li, J. Liang, W. Zhao, R. X. Lin, B. Zhu, G. L. Liu, L. Zhou, S. N. Zhu and J. Zhu, *Joule*, 2020, 4, 928–937.
- L. S, Y. Z. Wu, C. X. Zhang, H. Gao, J. Chen, L. Jin, P. Lin, H. X. Zhang and Y. Y. Xia, Desalination, 2021, 505, 114766.

- 92. Y. N, L. F. Su, Z. Q. Ma, Y. H. Zhang, C. L. Liu, Y. L. Zhang, L. Miao, J. H. Zhou, B. Wu and J. S. Qian, *Sol. Rrl.*, 2021, **5**, 2100210.
- 93. Y. Z, F. T. Meng, S. F. Zhang, B. Z. Ju and B. T. Tang, *Green Energy & Environment.*, 2021. DOI: 20.00003.
- X. L, X. P. Li, H. G. Li, Y. Zhao, J. Wu, S. K. Yan and Z. Z. Yu, *Adv. Funct. Mater.*, 2021, 32, 2110636.
- D. W, R. F. Zhu, J. Y. Xie, Y. M. Liu, M. M. Liu and S. H. Fu, *Chem. Eng. J.*, 2022, **427**, 131618.
- Y. G, J. X. Xiao, W. Q. Luo, D. Wang, S. K. Zhong, Y. R. Yue, C. N. Han, R. X. Lv, J. B. Feng, J. Q. Wang, W. Huang, X. L. Tian, W. Xiao and Y. J. Shen, *Nano Energy*, 2021, 87, 106213.
- X. W, M. S. Irshad, M. S. Abbasi, N. Arshad, Z. H. Chen, Z. Z. Guo, L. Yu, J. W. Qian, J. You and T. Mei, ACS Sustain. Chem. Eng., 2021, 9, 3880–3893.
- L. L, H. Li, L. Xiong, B. Wang, G. Wang, S. H. Ma and X. J. Han, ACS Appl. Nano Mater., 2021, 4, 14274–14284.
- J. Z, D. Huang, G. Wu, S. C. Chen and Y. Z. Wang, J. Mater. Chem. A, 2021, 9, 15776–15786.
- 100. M. C. T, W. G. Li, Y. Huang, K. Bertelsmann, M. Lau and D. L. Fan, *Adv. Energy. Mater.*, 2018, **8**, 1802108.
- 101. T. C, M. L. Yang, J. S. Shi, J. Y. Zhang, Y. Zhang and L. L. Wang, *Colloid Surface. A.*, 2022, **632**, 127786.
- 102. L. Z, Y. Z. Wang, F. Zhang, K. Yu, C. Y. Yang, J. J. Jia, W. Guo, J. X. Zhao and F. Y. Qu, ACS Appl. Mater. Interfaces, 2021, **13**, 26879–26890.
- 103. M. K. A, M. T. He, H. J. Liu, M. R. Zheng, J. Q. Zhao, L. M. Wang, L. Liu, X. H. Qin and J. Y. Yu, *Composites Communications*, 2021, **28**, 100936.
- 104. D. Z, J. H. Chen, S. He, G. P. Xia, X. Y. Wang, Q. J. Xiang, T. L. Wen, Z. Y. Zhong and Y. L. Liao, *J. Mater. Sci. Technol.*, 2021, **66**, 157–162.
- 105. S. G, T. X. Wang, G. Wang, H. Wang, J. B. Bai, S. H. Ma and B. B. Wang, J. Colloid Interf. Sci., 2021, 602, 767–777.
- 106. Y. W, S. J. Sun, B. B. Sun, F. F. Zhang, Q. Xu, H. Y. Mi, H. Li, X. M. Tao, Z. H. Guo, C. T. Liu and C. Y. Shen, *ACS Appl. Mater. Inter*faces, 2021, **13**, 24945–24956.
- 107. X. X, L. J. Zhang, J. Feng, B. Bai, N. Hu and H. L. Wang, *Sol. Energ. Mat. Sol. C.*, 2021, **230**, 111237.
- 108. L. Z, S. C. Zhang, T. W. Dou, J. L. Zou, Y. H. Zhang and L. G. Sun, *ACS Omega*, 2020, **5**, 2878-2885.
- 109. T. M, Y. Zhang, F. Zhang, W. Guo, K. Yu, C. Y. Yang and F. Y. Qu, *J. Colloid. Interf. Sci.*, 2022, **607**, 1446–1456.