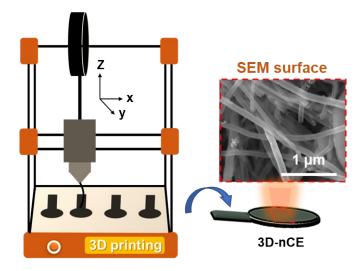
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information


Electrically Reading a Light-Driven Molecular Switch on 2D-Ti₃C₂T_x

MXene: Towards Responsive MXetronics

Jose Muñoz, Mario Palacios-Corella, Martin Pumera*

Supporting Figures

1. Fabrication of the 3D-nCE (transducer system)	2
2. FTIR characterization	3
3. TGA characterization	4
4. UV-vis (switch)	5
5. Z-potential and DLS (switch)	6
6. Contact angle (switch)	7
7. CV (control experiment)	8

Figure S1. 3D-printing setup employed for 3D-nCE fabrication. 3D-nCE were manufactured by fused deposition modeling technology using a Prusa i3 MK3 printer (Prusa Research, Czech Republic). Briefly, a commercially available graphene/polylactic acid nanocomposite filament (Black Magic 3D filament, USA) was utilized as the conductive material. For the printing, the filament was extruded down through the nozzle (0.4 mm) at 215 °C (bed temperature: 60 °C). The geometric area of the 3D-nCE (corresponding to the spheric part of the device, as depicted in the illustration) was 0.28 cm². To electrically activate the 3D-nCE, the electrode was immersed in DMF for 180 min in order to partially remove the insulating polylactic acid polymer of the electrode surface. Inset: Morphological image of the activated 3D-nCE surface taken by SEM.

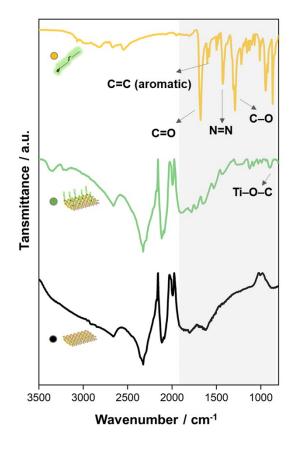


Figure S2. FTIR spectra of pristine $Ti_3C_2T_x$, functionalized AZO@Ti_3C_2T_x and raw AZO molecule. The basic characteristic peaks of raw AZO molecule were identified in the region from 1700 to 850 cm⁻¹, which includes the stretching vibration of C=O at 1685 cm⁻¹, the stretching vibration of C=C at 1569 cm⁻¹, the stretching vibration of N=N at 1420 cm⁻¹ and the stretching vibration of C=O at 1278 cm⁻¹. Such characteristic features observed in that region were clearly transferred to photo-responsive AZO@Ti_3C_2T_x. Further, the new peak at 886 cm⁻¹ in the AZO@Ti_3C_2T_x, which corresponds to the stretching vibration of Ti-O-C, elucidates the covalent nature of the grafting.

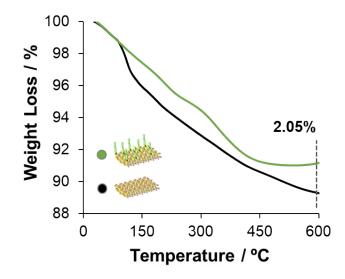


Figure S3. TGA curves of pristine 2D-Ti₃C₂T_x and functionalized AZO@Ti₃C₂T_x. Analyses were carried out in a N₂ atmosphere with a ramp temperature of 10 °C ·min⁻¹.

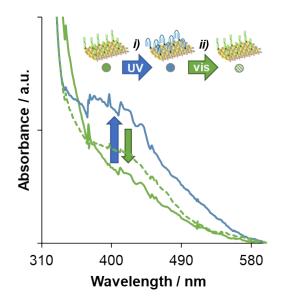
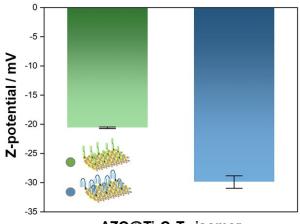
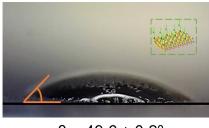




Figure S4. Optical properties of the photo-responsive AZO@Ti₃C₂T_x. UV-vis spectra of the photoresponsive AZO@Ti₃C₂T_x before and after irradiating the material with *i*) UV light and *ii*) green light for 15 min to promote a reversible bistable molecular switch (E-AZO@Ti₃C₂T_x \leftrightarrow Z-AZO@Ti₃C₂T_x).

AZO@Ti₃C₂T_x isomer

Figure S5. Z-potential of the photo-responsive AZO@Ti₃C₂T_x at the two different states. ζ -potential (in mV) of the photo-responsive AZO@Ti₃C₂T_x before (*E*–AZO@Ti₃C₂T_x) and after irradiating with UV light for 15 min (*Z*–AZO@Ti₃C₂T_x). This change is in line with the straight-to-bent transition of AZO molecule. Accordingly, a lower ζ -potential value is expected after UV light irradiation since the charge is confined in a lower particle size, resulting in a decrease from –20.6 ± 0.1 mV (*E*–AZO@Ti₃C₂T_x) to –29.9 ± 0.7 mV (*Z*–AZO@Ti₃C₂T_x). Experiments were run per triplicate (*n* = 3) using a Malvern Zetasaizer (solvent: deionized water; material concentration: 0.01 mg·mL⁻¹).

 $\theta = 49.6 \pm 0.2^{\circ}$

Figure S6. Reversibility of the water contact angle after green light irradiation. After irradiating the previous Z–AZO@Ti₃C₂T_x form with visible light for 15 min (in order to promote the Z/E transition), the resulting E–AZO@Ti₃C₂T_x exhibited a water contact angle value of 49.6 ± 0.2°. This value is higher than the one achieved by the photo-responsive AZO@Ti₃C₂T_x after UV irradiation (44 ± 1°) and close to the one exhibited before UV irradiation (51.2 ± 0.7°).

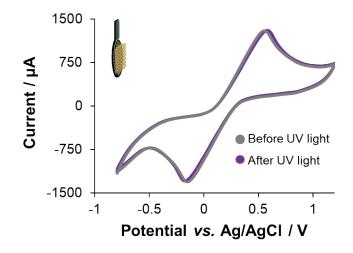


Figure S7. Control electrochemical experiment at the MXetronic made of pristine 2D-Ti₃C₂T_x. CV at the control MXetronic before and after UV light irradiation for 15 min, demonstrating that no significant electrochemical changes by means of ΔE and *Ip* values can be reached without the presence of the photoresponsive AZO molecule.