Electronic Supplementary Information

Practice of Function-Oriented Synthesis: High-Efficiency CO_2 Conversion and Knoevenagel Condensation by Two Novel In₃-based MOFs with High-Density Active Sites under Mild Conditions

Junyi Qiao, Borong Zhang, Lirong Zhang, and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. Email: yunling@jlu.edu.cn

Table of Contents:

S1. Synthesis of H₃BTCTBA ligand.	S1
S2. Crystallographic data and structures of JLU-MOF116 and JLU-MOF117.	S2
S3. PXRD patterns, TGA analyses and N_2 sorption isotherms of JLU-MOF116	and JLU-
MOF117 . \$5	
S4. CO_2 conversions with epoxides catalyzed by JLU-MOF116 and JLU-MOF1	.17.
	S8
S5. Knoevenagel condensation reactions catalyzed by JLU-MOF116 and JLU-	MOF117.

S21

S1. Synthesis of H₃BTCTBA ligand.

Synthesis of 4,4',4"-[1,3,5-benzenetriyltris(carbonylimino)]trisbenzoic acid (H₃BTCTBA)

H₃BTCTBA ligand was synthesized according to a literature with slight modifications.¹ 4aminobenzoic acid (6.0 g, 23.4 mmol) and K₂CO₃ (13.0 g, 92 mmol) were dissolved in 120 mL dry acetone and stirred under N₂ atmosphere at room temperature for 15 min. A solution of 1,3,5benzenetricarbonyltrichloride (12.6 g, 92 mmol) in 60 mL acetone was added slowly in 10 min. The mixture was stirred at 65 °C overnight. After cooling, the resultant precipitate was separated by filtration, washed with water (200 mL) and acetone (30 mL), and then dried at 60 °C under vacuum to obtain H₃BTCTBA as white solid.

Fig. S1. ¹H NMR spectrum of H₃BTCTBA.

S2. Crystallographic data and structures of JLU-MOF116 and 117.

Compound	JLU-MOF116
Formula	C ₄₆ H ₂₆ In ₃ N ₄ O ₂₀
Formula Weight	1299.17
Temperature (K)	293(2)
Crystal System	Tetragonal
Space Group	P4 ₂ /mnm
a (Å)	30.241(4)
b (Å)	30.241(4)
c (Å)	18.297(4)
α (°)	90
β (°)	90
γ (°)	90
V (Å ³)	16734(6)
Z, ρ_{calc} (g/cm ³)	4, 0.516
μ (mm ⁻¹)	0.434
F(000)	2548.0
2θ Range for Data Collection (°)	5.984 to 54.962
Reflections Collected	153985
Independent Reflections	10112 [R_{int} = 0.1321, R_{sigma} = 0.0526]
Data/Restraints/Parameters	10112/275/254
Goodness-of-fit on F ²	1.016
Final R Indexes $[I \ge 2\sigma (I)]$	$R_1^a = 0.0542$, $wR_2^b = 0.1543$
Final R Indexes [all data]	R ₁ ^a = 0.0779, wR ₂ ^b = 0.1648

Table S1. Crystal data and structure refinement of JLU-MOF116.

 ${}^{a} R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, {}^{b} wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})/\Sigma |w(F_{o}^{2})^{2}|^{1/2}$

Table	S2. Crystal data and structure refinement of JLU-MOF117	' .

Compound	JLU-MOF117
Formula	$C_{60}H_{30}In_3N_6O_{22}$
Formula Weight	1531.36
Temperature (K)	302.16
Crystal System	Orthorhombic
Space Group	Imma
a (Å)	20.1206(4)
b (Å)	28.9071(7)
c (Å)	29.2586(7)
α (°)	90
β (°)	90
γ (°)	90
V (Å ³)	17017.6(7)
Z, ρ _{calc} (g/cm³)	4, 0.598
μ (mm ⁻¹)	0.433
F(000)	3020.0
2θ Range for Data Collection (°)	4.508 to 50.700
Reflections Collected	33311
Independent Reflections	8133 [R _{int} = 0.0851, R _{sigma} = 0.0989]
Data/Restraints/Parameters	8133/20/263
Goodness-of-fit on F ²	0.947
Final R Indexes $[I \ge 2\sigma (I)]$	$R_1^a = 0.0411$, $wR_2^b = 0.1065$
Final R Indexes [all data]	$R_1^a = 0.0602$, $wR_2^b = 0.1132$

 ${}^{a} R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, {}^{b} wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})/\Sigma |w(F_{o}^{2})^{2}|^{1/2}$

Fig. S2. Molecular symmetries of BCPACBA and BTCTBA.

N-H· · · O: 3.09 Å

Fig. S3. The 2-fold interpenetration framework of **JLU-MOF117** showing N-H····O hydrogen-bond interactions and π - π interactions between the two adjacent BTCTBA ligands.

Fig. S4. CPK models of JLU-MOF116 framework along the [001], [110], and [100] directions.

Fig. S5. CPK models of JLU-MOF117 framework along the [100] and [110] directions.

S3. PXRD patterns, TGA analyses and N₂ sorption isotherms of JLU-MOF116 and 117.

Fig. S6. PXRD patterns of a) simulated, as-synthesized, and b) EtOH-exchanged JLU-MOF116.

Fig. S7. PXRD patterns of a) simulated, as-synthesized, and b) EtOH-exchanged JLU-MOF117.

Fig. S8. TGA curves of the as-synthesized and ethanol-exchanged JLU-MOF116.

Fig. S9. TGA curves of the as-synthesized and ethanol-exchanged JLU-MOF117.

Fig. S10. a) N₂ adsorption-desorption isotherm and b) pore size distribution of JLU-MOF116.

Fig. S11. a) N₂ adsorption-desorption isotherm and b) pore size distribution of JLU-MOF117.

Fig. S12. Fitting curves and parameters of CO_2 adsorption isotherms of **JLU-MOF116** at a) 278, b) 288, and c) 298 K.

Fig. S13. Fitting curves and parameters of CO_2 adsorption isotherms of **JLU-MOF117** at a) 278, b) 288, and c) 298 K.

Fig. S14. The isosters of Q_{st} values for a) JLU-MOF116 and b) JLU-MOF117.

S4. CO_2 conversions with epoxides catalyzed by JLU-MOF116 and JLU-MOF117.

Compound	Volumetric density of amide group (mol L ⁻¹)	Ref.
3W-ROD-1	2.5	2
sph-MOF-1	2.4	3
JLU-MOF117	2.4	This work
M_2 (carboxylate) ₄	2.1	4
JLU-MOF116	1.6	This Work
DUT-32	0.9	5

Table S3. Comparisons of volumetric densities of amide groups in JLU-MOF116, 117, and other amide-based MOF materials.

Table S4. The investigation of optimal conditions for CO_2 conversion by JLU-MOF116 and JLU-MOF117.

°-l

+ CO_2 $\xrightarrow{\text{MOF catalyst, TBAB}}$ \overrightarrow{O}									
	JLU-MOF116					JLU-MOF117			
Entry®	Cat. (mol%)	TBAB (mol%)	Time (h)	Yield (%)	Entry	Cat. (mol%)	TBAB (mol%)	Time (h)	Yield (%)
1	0.075	5	8	59	14	0.05	5	6	38
2	0.15	5	8	> 99	15	0.1	5	6	94
3	0.3	5	8	> 99	16	0.2	5	6	97
4	0.15	2	8	95	17	0.1	2	6	86
5	0.15	8	8	> 99	18	0.1	8	6	> 99
6	0.15	5	1	51	19	0.1	5	1	47
7	0.15	5	2	69	20	0.1	5	2	59
8	0.15	5	3	91	21	0.1	5	3	72
9	0.15	5	4	96	22	0.1	5	4	86
10	0.15	5	5	97	23	0.1	5	5	92
11	0.15	5	6	99	24	0.1	5	8	99
12	None	5	6	32	25	None	5	6	32
13 ^b	0.15	5	6	41	26 ^b	0.15	5	6	39

Reaction conditions: ^a Activated MOF catalysts, styrene oxide (10 mmol) and 1 atm CO₂ pressure. ^b As-synthesized MOF catalysts.

In order to determine the optimal reaction condition, a sequence of JLU-MOF116-catalyzed CO₂ conversion reactions with styrene oxide was performed at 60 $^{\circ}$ C and 1 atm CO₂ pressure. The amount of MOF catalyst was first explored within a prolonged reaction time and an appropriate TBAB amount of 5 mol%. CO2 conversion with styrene oxide catalyzed by 0.075 mol% JLU-MOF116 resulted in only 59% yield while gained nearly 100% yields by 0.15 and 0.3 mol% catalysts (Table S4, Entry 1-3). Accordingly, the appropriate catalyst amount was determined as 0.15 mol%. As an efficient nucleophile, the amount of TBAB co-catalyst also has an impact on CO_2 conversion. The yield was 95% and 99%, when 2 mol% and 5 mol% TBAB engaged in the reaction, respectively (Table S4, Entry 4 and 11). Thereby, the amount of TBAB was determined as 5 mol%. The optimal catalyst amounts were investigated in the same manner to be 0.1 mol% JLU-MOF117 and 5 mol% TBAB (Table S4, Entry 15-19), which is also easy for comparison with JLU-MOF116. The kinetic curves of the CO_2 conversion reactions by JLU-MOF116 and 117 were further investigated. The CO₂ conversions have already gained 51% and 47% yields for JLU-MOF116 and 117 within the initial 1 h, respectively, reached up to 97% and 94% yields within the next 4 hours for JLU-MOF116 and 5 hours for JLU-MOF117, respectively, and achieved equilibriums thereafter (Table S4, Entry 6-11, 20-25).

Fig. S15. ¹H NMR spectrum of CO₂ conversion with styrene oxide without MOF catalyst.

Fig. S16. ¹H NMR spectra of CO₂ conversion catalyzed by a) 0.075 mol%, b) 0.15 mol%, and c) 0.3 mol% JLU-MOF116.

Fig. S17. ¹H NMR spectra of CO₂ conversion catalyzed by a) 0, b) 2 mol%, and c) 8 mol% TBAB and **JLU-MOF116**.

Fig. S18. ¹H NMR spectra of CO_2 conversion catalyzed by a) 0.05 mol% and b) 0.2 mol% JLU-MOF117.

Fig. S19. ¹H NMR spectra of CO₂ conversion catalyzed by **JLU-MOF116** within a) 1 h, b) 2 h, c) 3 h, and d) 4 h.

Fig. S20. ¹H NMR spectra of CO₂ conversion catalyzed by a) 0, b) 2 mol%, and c) 8 mol% TBAB and **JLU-MOF117**.

Fig. S21. ¹H NMR spectra of CO₂ conversion catalyzed by **JLU-MOF116** within a) 5 h, b) 6 h, and c) 8 h.

Fig. S22. ¹H NMR spectra of CO₂ conversion catalyzed by **JLU-MOF117** within a) 1 h, b) 2 h, and c) 3 h.

Fig. S23. ¹H NMR spectra of CO₂ conversion catalyzed by **JLU-MOF116** within a) 4 h, b) 5 h, and c) 6 h.

Fig. S24. CO₂ conversions by JLU-MOF116 and 117 under 1 atm of CO₂ and N₂ mixed gases $(CO_2/N_2, 15/85, v/v)$.

Fig. S25. ¹H NMR spectrum of CO₂ conversion with propylene oxide catalyzed by **JLU-MOF116**.

Fig. S26. ¹H NMR spectrum of CO₂ conversion with propylene oxide catalyzed by JLU-MOF117.

Fig. S27. ¹H NMR spectrum of CO_2 conversion with epoxy chloropropane catalyzed by JLU-MOF116.

Fig. S28. ¹H NMR spectrum of CO_2 conversion with epoxy chloropropane catalyzed by **JLU-MOF117**.

Fig. S29. ¹H NMR spectrum of CO_2 conversion with epoxypropyl phenyl ether catalyzed by JLU-MOF116.

Fig. S30. ¹H NMR spectrum of CO_2 conversion with epoxypropyl phenyl ether catalyzed by **JLU-MOF117**.

Fig. S31. ¹H NMR spectrum of CO_2 conversion with o-tolyl glycidyl ether catalyzed by **JLU-MOF116**.

Fig. S32. ¹H NMR spectrum of CO_2 conversion with o-tolyl glycidyl ether catalyzed by JLU-MOF117.

Fig. S33. ¹H NMR spectrum of CO₂ conversion with cyclohexene oxide catalyzed by JLU-MOF116.

Fig. S34. ¹H NMR spectrum of CO₂ conversion with cyclohexene oxide catalyzed by JLU-MOF117.

Culturate	Common and a	Time	Yield	TON	TOF	Def	
Substrate	Compound "	(h)	(%)	TON	(h ⁻¹)	NCI.	
	Ce ₂ NDC ₃	8	89	360	45.0	6	
	MOF1	24	11	65	15.9	7	
	Hf-NU-1000	56	100	400	7.1	8	
50	In ₂ (OH)(btc)(Hbtc) _{0.4} (L) _{0.6} ·3H ₂ O	48	32	139	2.9	9	
50	{[Ba ₂ (BDPO)(H ₂ O)]·DMA} _n	48	19.8	105	2.2	10	
	${[Sr(BDPO)_{0.5}(H_2O)] \cdot 2H_2O}_n$	48	18	21	0.4	11	
	JLU-MOF117 ^b	6	94	940	156.7	This Work	
	JLU-MOF116 ^b	5	97	647	129.4	This Work	
	Ce ₂ NDC ₃	8	92	372	46.5	6	
	MOF1	24	99	582	24.3	7	
	FJI-H7(Cu)	60	67	333	5.5	12	
ECH	${[Ba_2(BDPO)(H_2O)] \cdot DMA}_n$	48	90	180	3.8	10	
	[Cu(bpy) ₂ (EDS)] _n	Not Mentioned	92	92		13	
	JLU-MOF117 ^b	6	98	980	163.3	This Work	
	JLU-MOF116 ^b	5	97	647	129.4	This Work	

Table S5. CO_2 cycloaddition catalytic efficiencies of **JLU-MOF116** and **117** in comparison with other MOF materials.

^a Room temperature, 1 bar CO₂ pressure; ^b 60 °C, 1 bar CO₂ pressure.

Fig. S35. The catalytic efficiencies of JLU-MOF116 and 117 for CO₂ conversion within five cycles.

Fig. S36. PXRD patterns of a) **JLU-MOF116** and b) **JLU-MOF117** after five cycles of cycloadditions of styrene oxide with CO₂.

S5. Knoevenagel condensation reactions catalyzed by JLU-MOF116 and JLU-MOF117.

Table S6. The investigation of optimal reaction conditions of Knoevenagel condensation for JLU-MOF116 and JLU-MOF117.

Entry	JLU-MOF116				Catal.	JLU-MOF117			
Entry	Cat. (mol%)	Temp. (°C)	Time (min)	Yield (%)	Entry	Cat. (mol%)	Temp. (°C)	Time (min)	Yield (%)
1	0.125	40	180	89	13	0.25	40	120	99
2	0.250	40	180	98					
3	0.500	40	180	98	14	0.50	40	120	> 99
4	0.250	20	180	90	15	0.25	20	120	96
5	0.250	60	180	96					
6	0.250	40	30	60	16	0.25	40	30	89
7	0.250	40	60	81	17	0.25	40	60	94
8	0.250	40	90	93					
9	0.250	40	120	95	18	0.25	40	90	99
10	0.250	40	150	97	19	L2	40	90	24
11	L1	40	120	3					
12	None	40	120	30	20	None	40	90	21

Reaction conditions: Benzaldehyde (2 mmol), malononitrile (3 mmol), EtOH (4 mL).

Malononitrile (3 mmol) and benzaldehyde (2 mmol) were chosen as substrates to investigate optimal conditions. The amount of MOF catalysts was investigated initially. The reactions catalyzed by 0.25 mol% and 0.5 mol% **JLU-MOF116** resulted in a 98% yield, while the reduction of **JLU-MOF116** to 0.125 mol% led to a negligible decline to an 89% yield (Table S6, Entry 1-3). Thereby, the amount of **JLU-MOF116** was determined as 0.25 mol%. **JLU-MOF117** was also determined as 0.25 mol% with a 99% yield for ease of comparison. The optimal reaction time and temperature were determined by time-varying kinetic curves under different temperatures to be 120 min/40 °C for **JLU-MOF116** and 90 min/40 °C for **JLU-MOF117**, respectively (Table S6, Entry 6-10 and 16-18, and Figure S42).

Fig. S37. ¹H NMR spectra of Knoevenagel condensation reactions catalyzed by a) 0.125 mol% and b) 0.5 mol% JLU-MOF116.

Fig. S38. ¹H NMR spectra of Knoevenagel condensation reactions catalyzed by 0.5 mol% JLU-MOF117.

Fig. S39. ¹H NMR of Knoevenagel condensation reactions catalyzed by **JLU-MOF116** at 20 $^{\circ}$ C within a) 30, b) 60, c) 90, d) 120, e) 150, and f) 180 min.

Fig. S40. ¹H NMR of Knoevenagel condensation reactions catalyzed by **JLU-MOF116** at 40 $^{\circ}$ C within a) 30, b) 60, c) 90, d) 120, e) 150, and f) 180 min.

Fig. S41. ¹H NMR of Knoevenagel condensation reactions catalyzed by **JLU-MOF116** at 60 $^{\circ}$ C within a) 30, b) 60, c) 90, d) 120, e) 150, and f) 180 min.

Fig. S42. ¹H NMR of Knoevenagel condensation reactions catalyzed by **JLU-MOF117** at 20 $^{\circ}$ C within a) 30, b) 60, c) 90, and d) 120 min.

Fig. S43. ¹H NMR of Knoevenagel condensation reactions catalyzed by **JLU-MOF117** at 40 $^{\circ}$ C within a) 30, b) 60, c) 90, and d) 120 min.

Fig. S44. Knoevenagel condensation reactions without catalyst within a) 90 min and b) 120 min.

Fig. S45. Time-varying kinetic curves of a) **JLU-MOF116** and b) **JLU-MOF117** for Knoevenagel condensation.

Fig. S46. ¹H NMR spectra of the Knoevenagel condensation by **JLU-MOF116** with a) 4-fluorobenzaldehyde, b) 4-chlorobenzaldehyde, c) 4-bromobenzaldehyde, and d) 4-nitrobenzaldehyde as reactants.

Fig. S47. ¹H NMR spectra of the Knoevenagel condensation by **JLU-MOF116** with a) 4-methyl benzaldehyde, b) 4-anisaldehyde, c) 2,4,6-trimethylbenzaldehyde, and d) 2-naphthaldehyde as reactants.

Fig. S48. ¹H NMR spectra of the Knoevenagel condensation by **JLU-MOF116** with a) cyclohexanecarboxaldehyde, b) pentanal, and c) isovaleraldehyde as reactants.

Fig. S49. ¹H NMR spectra of the Knoevenagel condensation by **JLU-MOF117** with a) 4-fluorobenzaldehyde, b) 4-chlorobenzaldehyde, c) 4-bromobenzaldehyde, and d) 4-nitrobenzaldehyde as reactants.

Fig. S50. ¹H NMR spectra of the Knoevenagel condensation by **JLU-MOF117** with a) 4-methyl benzaldehyde, b) 4-anisaldehyde, c) 2,4,6-trimethylbenzaldehyde, and d) 2-naphthaldehyde as reactants.

Fig. S51. ¹H NMR spectra of the Knoevenagel condensation by **JLU-MOF117** with a) cyclohexanecarboxaldehyde, b) pentanal, and c) isovaleraldehyde as reactants.

Fig. S52. The catalytic performances of **JLU-MOF116** and **117** for Knoevenagel condensation within five cycles.

Table S7. Knoevenagel condensation catalytic efficiencies of **JLU-MOF116** and **117** in comparison with other MOF materials.

Compound	Cat.	Solvent	Temp. (°C) &	Yield	TON	TOF	Pof	
	(mol%)	Solvent	Time (h)	(%)	TON	(min⁻¹)		
JLU-MOF117	0.25	Ethanol	40 °C/1.5 h	99	396	4.40	This work	
JLU-MOF116	0.25	Ethanol	40 °C/2 h	95	380	3.17	This work	
NUC-21	0.3	Solvent free	70 °C/1 h	97	323	5.38	14	
[Co₂(bptc)(H₂O)₂]·5DMA	2	Solvent free	60 °C/6 h	> 99	50	0.14	15	
MOF3	0.25	DMF	RT/6 h	97	388	1.08	16	
NUC-25	0.4	Solvent free	80 °C/24 h	99	248	0.17	17	
$[Zn(\kappa N-H_3L)(H_2O)_3]\cdot 3H_2O$	3	THF	50 °C/4 h	94	31	0.13	18	
NUC-38Yb	0.3	Ethanol	45 °C/24 h	96	1280	0.89	19	
NUC-28	0.3	Ethanol	45 °C/24 h	96	320	0.22	20	
UiO-66-NH-RNH ₂	1	Toluene	RT/2 h	97	97	0.81	21	
$[Cu_2(\mu\text{-}H_3\text{ddba})_2(\text{phen})_2]$	2	H ₂ O	25 °C/1 h	> 99	50	0.83	22	

Fig. S53. The Knoevenagel condensation reactions by 0.25 mol as-synthesized **JLU-MOF116** and **JLU-MOF117**, respectively.

Reference

1. J. Y. Qiao, B. R. Zhang, X. Y. Yu, X. Q. Zou, X. Y. Liu, L. R. Zhang and Y. L. Liu, *Inorg. Chem.*, 2022, **61**, 3708–3715.

2. Y. F. Zhang, Z. H. Zhang, L. Ritter, H. Fang, Q. Wang, B. Space. Y. B. Zhang, D. X. Xue and J. F. Bai, *J. Am. Chem. Soc.*, 2021, **143**, 12202–12211.

3. H. Jiang, J. T. Jia, A. Shkurenko, Z. J. Chen, K. Adil, Y. Belmabkhout, L. J. Weselinski, A. H. Assen, D. X. Xue, M. O'Keeffe and M. Eddaoudi, *J. Am. Chem. Soc.*, 2018, **140**, 8858–8867.

4. B. S. Zheng, J. F. Bai, J. G. Duan, L. Wojtas and M. J. Zaworotko, *J. Am. Chem. Soc.*, 2011, **133**, 748–751.

5. R. Grünker, V. Bon, P. Müller, U. Stoeck, S. Krause, U. Mueller, I. Senkovska and S. Kaskel, *Chem. Commun.*, 2014, **50**, 3450–3452.

6. S. K. Das, S. Chatterjee, S. Bhunia, A. Mondal, P. Mitra, V. Kumari, A. Pradhan and A. Bhaumik, *Dalton Trans.*, 2017, **46**, 13783–13792.

7. G. Chakraborty, P. Das and S. K. Mandal, Inorg. Chem., 2021, 60, 5071–5080.

8. H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp and O. K. Farha, *J. Am. Chem. Soc.*, 2014, **136**, 15861–15864.

9. L. Liu, S. M. Wang, Z. B. Han, M. L. Ding, D. Q. Yuan and H. L. Jiang, *Inorg. Chem.*, 2016, 55, 3558–3565.

10. X. Y. Li, L. N. Ma, Y. Liu, L. Hou, Y. Y. Wang and Z. H. Zhu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 10965–10973.

11. X. Y. Li, Y. Z. Li, Y. Yang, L. Hou, Y. Y. Wang and Z. H. Zhu, *Chem. Commun.*, 2017, **53**, 12970–12973.

12. J. Zheng, M. Y. Wu, F. L. Jiang, W. P. Su and M. C. Hong, *Chem. Sci.*, 2015, **6**, 3466–3470.

13. G. Y. Zhang, G. F. Wei, Z. P. Liu, S. R. J. Oliver and H. H. Fei, *Chem. Mater.*, 2016, **28**, 6276–6281.

H. T. Chen, L. M. Fan and X. T. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 54884–54892.
J. B. Deng, X. Wang, Z. Q. Ni and F. Zhu, *Arab. J. Chem.*, 2020, **13**, 7482–7489.

16. Y. Y. Zhang, Q. Liu, L. Y. Zhang, Y. M. Bao, J. Y. Tan, N. Zhang, J. Y. Zhang and Z. J. Liu, *Dalton Trans.*, 2021, **50**, 647–659.

17. H. Chen, T. Hu, L. Fan and X. Zhang, Inorg. Chem., 2021, 60, 1028–1036.

18. A. Karmakar, A. Paul, K. T. Mahmudov, M. F. C. Guedes da Silva and A. J. L. Pombeiro, *New J. Chem.*, 2016, **40**, 1535–1546.

19. T. Zhang, H. Chen, S. Liu, H. Lv, X. Zhang and Q. Li, ACS Catal., 2021, 11, 14916–14925.

20. T. Zhang, Z. Zhang, H. Chen, X. Zhang and Q. Li, Cryst. Growth Des., 2021, 22, 304–312.

21. Y. Luan, Y. Qi, H. Gao, R. S. Andriamitantsoa, N. Zheng and G. Wang, *J. Mater. Chem. A*, 2015, **3**, 17320–17331.

22. H. R. Zhang, J. Z. Gu, M. V. Kirillova and A. M. Kirillov, *Inorg. Chem. Front.*, 2021, **8**, 4209–4221.