Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Crucial role of oxygen substitution in argyrodite solid electrolytes from bulk to surface under atmospheric conditions

Taesoon Hwang $\ddagger^{a,c}$, You-Jin Lee \ddagger^{b} , So Ri Lee b , Yoon-Cheol Ha b , Maenghyo Cho^c, Sang-Min Lee *b,d and Kyeongjae Cho*a

^a Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA. E-mail: kjcho@utdallas.edu.

^b Battery Research Center, Korea Electrotechnology Research Institute, Seongsan-gu, Changwonsi 51543, Korea

^c Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul 08826, Republic of Korea.

^d Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang-si 37673, Republic of Korea. E-mail: sangma@postech.ac.kr.

[‡] These authors contributed equally.

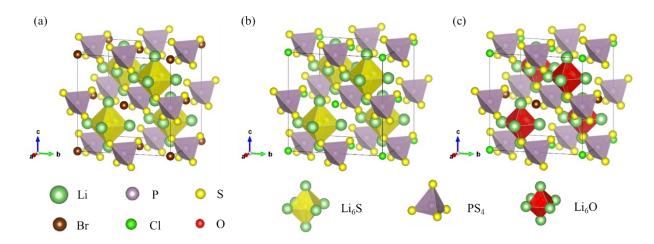


Fig. S1 Atomic structures of (a) Li_6PS_5Br , (b) Li_6PS_5Cl and (c) $Li_6POS_4Br_{0.5}Cl_{0.5}$.

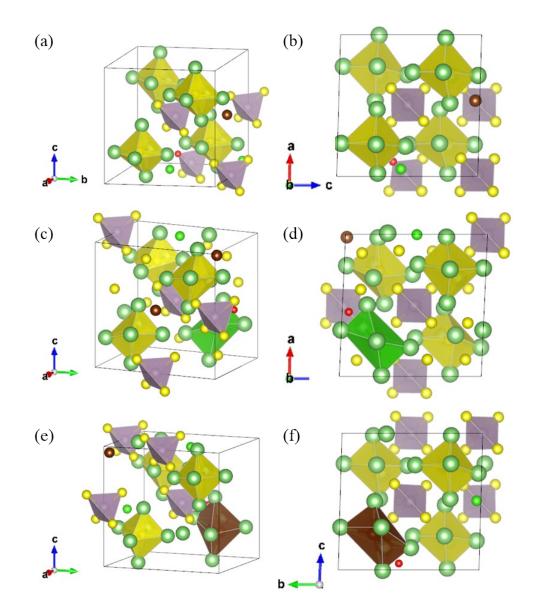


Fig. S2 Atomic structures of (a,b)16e site $Li_6PO_{0.25}S_{4.75}Br_{0.5}Cl_{0.5}$ (c,d for Cl and e,f for Br) 4a site inversed $Li_6PO_{0.25}S_{4.75}Br_{0.5}Cl_{0.5}$.

	а	Ь	с	alpha	beta	gamma
16e site Li6PO0.25S4.75Br0.5Cl0.5	10.17	10.17	10.23	88.50	91.51	88.14
Cl - 4a site inversed Li6PO0.25S4.75Br0.5Cl0.5	10.08	10.39	10.39	90.21	88.42	91.58
Br - 4a site inversed Li6PO0.25S4.75Br0.5Cl0.5	10.51	10.08	10.08	92.55	90.37	90.37

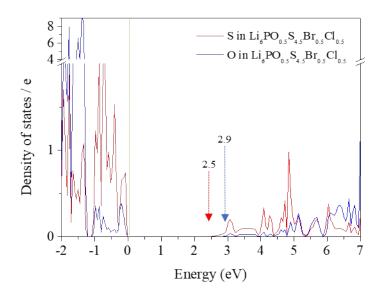
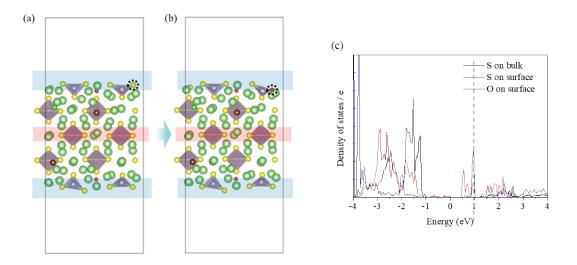



Fig. S3 Density of states for S and O in Li₆PO_{0.5}S_{4.5}Br_{0.5}Cl_{0.5}.(Dotted arrows are band gaps).

Fig. S4 Atomic structures before and after the exchange between S and O in (a, b) $Li_6PO_{0.5}S_{4.5}Br_{0.5}Cl_{0.5}$; PDOSs of the exchanged S, O on the surface and S in the bulk for (c) $Li_6PO_{0.5}S_{4.5}Br_{0.5}Cl_{0.5}$.(blue shaded areas : surfaces, red shaded area : bulk, black dotted circle : exchanged elements).

	S on 4d	S on 16e	O on 4d	р
Li ₆ PS ₅ Br _{0.5} Cl _{0.5}	-1.65	-0.80	Х	1.239
Li ₆ PO _{0.5} S _{4.5} Br _{0.5} Cl _{0.5}	-1.63	-0.73	-1.69	1.25
Li ₆ POS ₅ Br _{0.5} Cl _{0.5}	Х	-0.72	-1.69	1.25

 Table S2. Average net charges of S and O at the surface before the exchange.

Table S3. Average net charges of S and O at the surface After the exchange.S on 4dS on 16eExchanged OO on 4dP

Li ₆ PS ₅ Br _{0.5} Cl _{0.5}	-1.65	-0.77	-1.51	Х	1.42
Li ₆ PO _{0.5} S _{4.5} Br _{0.5} Cl _{0.5}	-1.64	-0.74	-1.46	-1.69	1.44
Li ₆ POS ₅ Br _{0.5} Cl _{0.5}	Х	-0.72	-1.42	-1.69	1.42

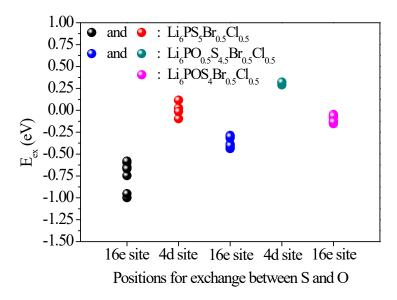


Fig. S5 Exchange energy between S and O depending on the positions in $Li_6PS_5Br_{0.5}Cl_{0.5}$, $Li_6PO_{0.5}S_{4.5}Br_{0.5}Cl_{0.5}$ and $Li_6POS_4Br_{0.5}Cl_{0.5}$.

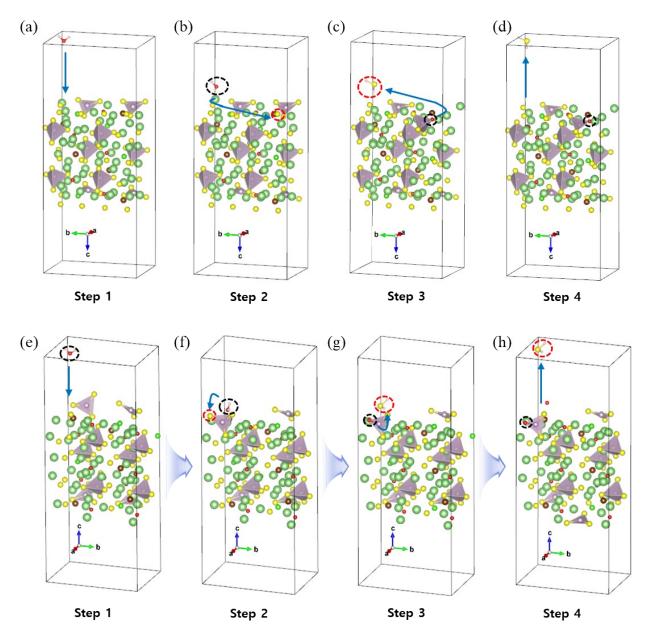
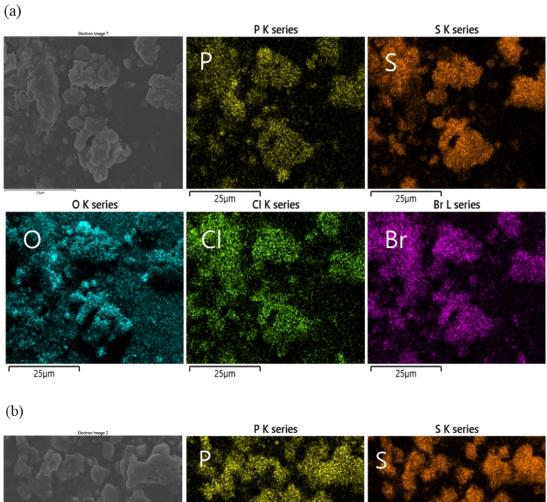



Fig. S6 Atomic structures of (a-d) $Li_6POS_{4.5}Br_{0.5}Cl_{0.5}$ and (e-h) $Li_6POS_5Br_{0.5}Cl_{0.5}$ of reaction steps from H_2O to H_2S

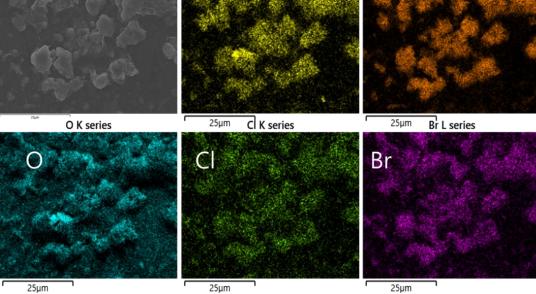


Fig. S7 Morphology and distributions of constituents in (a) $Li_6PS_5Br_{0.5}Cl_{0.5}$ and (b) $Li_6PO_{0.5}S_{4.5}Br_{0.5}Cl_{0.5}$.

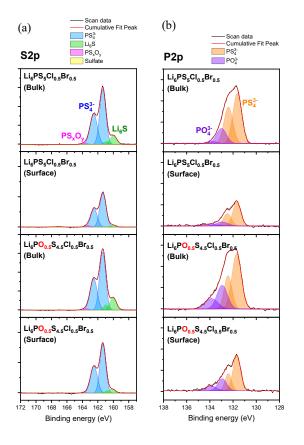


Fig. S8 (a)S2p and (b)P2p XPS spectra of $Li_6PS_5Br_{0.5}Cl_{0.5}$ and $Li_6PO_{0.5}S_{4.5}Br_{0.5}Cl_{0.5}$ solid electrolytes after exposure to dry air.