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Figure S1. X-ray photoelectron spectroscopy of the MnO,-based cathode. XPS spectra of Mn 3s in
the MnO;-based cathode at different states.



5.6

T T T T T
9-9-9-90-0-9-0-9-0-9-0-90-9—9 °
54 & %I
) ©
4 5\
5.2 b
I & —@—pH
6 —©— Transmittance I
5.0 73
S o '
4.8 7
32 \g
264 || ™~ i
1 ©
4.4 -
T T T T T T
0 2 4 6 8 10 12
NaOH (ug)

Figure S2. Changes of pH (red colour, measured using a pH meter) and transmittance (blue colour,

measured at 600 nm) of the electrolyte while adding NaOH.
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Figure S3. Electrolyte with and without MnSO.. (a,b) SEM images of MnO, cathode after discharge
(a) and recharge (b) in 2 M ZnSQO, electrolyte without containing MnSQ.. (c) SEM images of the
MnO,-based cathode after recharged to 1.8 V with 2 M ZnSO4 + 0.1 M MnSQO; as electrolyte. The
insets of (a-c) show the corresponding highly magnified SEM, respectively. (d) XRD of the MnO,-
based cathode at three stages of discharge and recharge: 1% discharged to 1.0 V with 2 M ZnSO4 +
0.1 M MnSQ; as electrolyte (red), 1°t discharged to 1.0 V with 2 M ZnSO;, as electrolyte (blue), and 1%
recharged to 1.8 V with 2 M ZnSO;, as electrolyte (pink), respectively . In case of the full discharge,
zinc sulphate hydroxide (ZSH) was identified unconditionally, however, in case of the full recharge,
ZSH was identified only when the electrolyte without MnSO, was used.
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Figure S4. Structural and morphological characterization of 3D-SWCNT/MnO; and 3D-SWCNT/Zn
based electrodes and the packed cell. (a,b,c,d) SEM images of the wire-meshed current collectors
(a), 3D-SWCNT-networks on the wire-meshed current collectors (b), 3D-SWCNT/MnO; on the wire-
meshed current collectors (c), and 3D-SWCNT/Zn on the wire-meshed current collectors (d). The
insets of (a-d) show the corresponding highly magnified SEM, respectively. (e) Schematic illustration
of a flexible 3D-SWCNT/Zn/3D-SWCNT/MnO; cell. (f,g) Photographs of the size of the Zn/MnO,
battery device.
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Figure S5. Electrochemical performance of Zn/ZnS04-MnS04/Mn0O; cells. (a) Galvanostatic discharge-
recharge curves under different environmental temperatures (5°C ~ 45°C). (b) GCD curves with
different bending angles (0°, 90°, 180°). (c) Capacity retention after 300 bending cycles from 0° to
180° bending angle; the inserted photos show non-bent and after bending (180° bending degree) of

the model cell used in the bending cycle evaluation. (d,e) GCD curves of a single cell and two cells
being linked in series (d) and in parallel (e).
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Figure S6. Long-term cyclic performance tests of a CR2032 coin cell based Zn/ ZnSO4-MnSO4/Mn0O,
single cell. The cell was being discharged/recharged for 11000 cycles. The cell was paced in a
constant 25 °C oven and continuously ran for 4800 cycles. After the running being stopped for two
days (pointed by a black arrow), the cell ran continuously to 8000 cycles. The cell was paced under
ambient conditions (without control of temperatures, pointed by a green arrow) and then
continuously ran for another 3000 cycles. Capacity retention was 82.5% after 11000 cycles.
Discharge/recharge rate: 1.5 A gl



