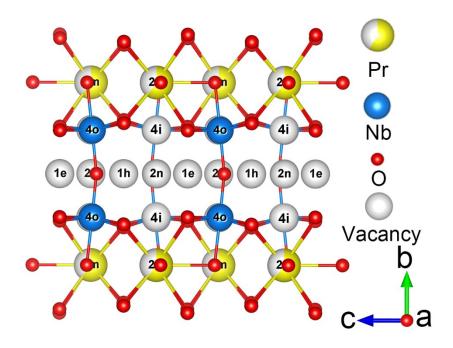
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

High-rate electrochemical lithium-ion storage through ${\rm Li^+}$ intercalation pseudocapacitance in ${\rm Pr_{1/3}NbO_3}$ anode

Guisheng Liang^{a,b}, Liting Yang^b, Xuhui Xiong^b, Xianhu Liu^d, Xuefeng Zhang^e, Renchao Che^{a,b,c}*

^aMaterials Genome Institute, Shanghai University, Shanghai, China.


*E-mail: rcche@fudan.edu.cn

^bLaboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China

^cZhejiang Laboratory, Hangzhou 311100, China

^dKey Laboratory of Materials Processing and Mold, Zhengzhou University, Ministry of Education, Zhengzhou 450002, P. R. China.

^eInstitute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.

Fig. S1. The 1*e*, 1*h*, 2*n*, 2*m*, 4*o* and 4*i* sites in $Pr_{1/3}NbO_3$ lattice.

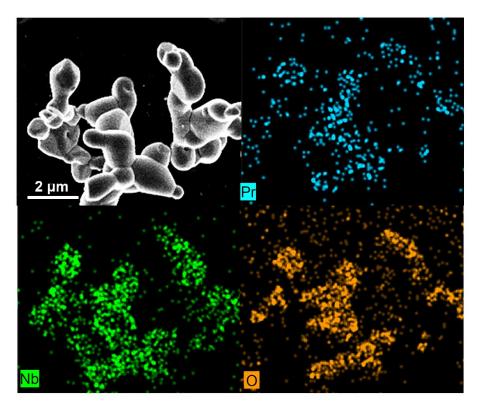


Fig. S2. EDS mapping images of Pr, Nb, and O taken from the selected section.

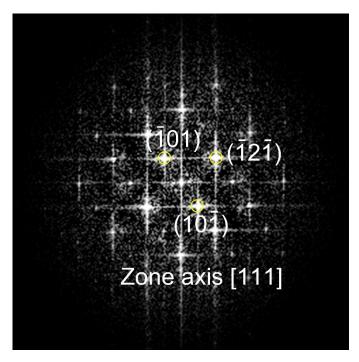


Fig. S3. SAED image original from HAADF image of $Pr_{1/3}NbO_3$.

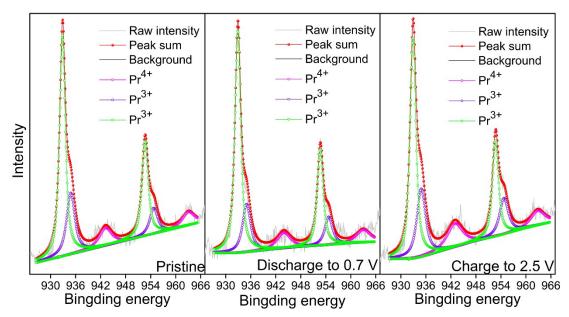


Fig. S4. Ex-situ Pr-3d XPS spectra at different lithiation states.

For pristine $Pr_{1/3}NbO_3$, the peaks at 932.9, 934.9, 952.8, and 954.9 eV are attributed to Pr^{3+} and the peaks at 943.1 and 963.1 eV are ascribed to Pr^{4+} in the Pr-3d XPS spectra. During the lithiation and delithiation, no obvious change in the characteristic peaks of Pr^{3+} and Pr^{4+} is detected and no new XPS peaks can be separated from the XPS spectrum of Pr 3d. This finding demonstrates that Pr does not undergo redox reactions during the discharge/charge process and does not contribute to the capacity of $Pr_{1/3}NbO_3$.

Table S1. Fractional atomic parameters of Pr_{1/3}NbO₃ with P2/m space group.

atom	site	х	У	Z	occupancy
Pr	2 <i>m</i>	0.248232	0.0000	0.751840	0.6667
Nb	40	0.253088	0.261104	0.249832	1.000
01	2 <i>n</i>	0.240744	0.5000	0.252841	1.000
O2	2m	0.220253	0	0.211661	1.000
О3	2 <i>l</i>	0.5000	0.211041	0.5000	1.000
O4	2k	0.0000	0.203417	0.5000	1.000
O5	2j	0.5000	0.251392	0.0000	1.000
O6	2i	0.0000	0.277733	0.0000	1.000

 $\textbf{Table S2}. \ Lattice \ parameters \ of \ Pr_{1/3}NbO_3.$

Sample	a (Å)	b (Å)	c (Å)	$\alpha = \gamma$ (°)	β (°)	$V(Å^3)$
Pr _{1/3} NbO ₃	5.518081	7.870665	5.518272	90	90.205	239.662

The ${}^*R_{wp}$ (weighted profile residual) of $Pr_{1/3}NbO_3$ is 0.1095.

The theoretical capacity of Pr_{1/3}NbO₃ is calculated by the following method:

$$Q_{theoretical} = \frac{nF}{3.6M} = \frac{2 \times 96485.3 \ C \ mol^{-1}}{3.6 \ C \ mA^{-1}h^{-1} \times 187.87 \ g \ mol^{-1}} = 285.3 \ mAg^{-1}$$

where n is the number of electrons transferred per formula unit, F is Faraday's constant, 3.6 is a conversion factor between coulombs and the conventional milliampere-hour and M is the mass per formula unit. For intercalation Nb-based anode, Nb⁵⁺ can be reduce to Nb³⁺ with two electron transfer. Therefore, the value of n is 2 in the above equation.

The kinetic analyses of the Li⁺ storage in $Pr_{1/3}NbO_3$ was conducted using CV tests at various scan rates ranging from 0.2 to 0.5 mV s⁻¹. In this case, the pseudocapacitive contribution to the electrochemical capacity can be calculated based on **Equation** (1). [S1]

$$i(V) = k_{a}v + k_{b}v^{1/2}$$
 (1)

where, i (V) is the total current at a given voltage, v is the scan rate, and k_p and k_d are adjustable factors. $K_a v$ and $k_b v^{1/2}$ are the currents from the pseudocapacitive contribution and the diffusion-controlled process, respectively.

The Li⁺ diffusion coefficients (D_{Li}) were calculated from GITT data based on **Equation** (2). [S2-S5]

$$D_{Li} = \frac{4}{\pi t} \left(\frac{m_B V_m}{M_B S} \right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau} \right)^2 \qquad (t \ll L^2 / D_{Li})$$
 (2)

where, $m_{\rm B}$, $M_{\rm B}$, $V_{\rm m}$ and L present the mass, molar mass, and molar volume, of the active material, respectively; S is the surface area and linear length of the working electrode; t is the time during which a constant current is applied; $\Delta E_{\rm S}$ and ΔE_{τ} respectively embody the change in the equilibrium voltage and the change in voltage during the current pulse. Based on **Equation** (2) the apparent Li⁺ diffusion coefficients of $Pr_{1/3}NbO_3$ during different discharge/charge states are obtained and displayed in **Fig.**

Table S3. Comparisons of average Li^+ diffusion coefficients (D_{Li}) of $Pr_{1/3}NbO_3$ with those of fast charging anode materials previously reported. The Li^+ diffusion coefficients were calculated through GITT.

material	$D_{ m Li}~({ m cm^2~s^{-1}})$	reference	
Pr _{1/3} NbO ₃	1.78×10 ⁻¹¹	This work	
$Cu_2Nb_{34}O_{87}$	3.5×10^{-13}	S6	
$MoNb_{12}O_{33}$	3.9×10^{-14}	S7	
$Al_{0.5}Nb_{24.5}O_{62}$	1.65×10^{-12}	S8	
TiNb ₂ O ₇	4.28×10^{-14}	S9	
$Zn_2Nb_{34}O_{87}$	5.6×10^{-12}	S10	
$\text{Li}_4\text{Ti}_5\text{O}_{12}$	3.27×10^{-12}	S11	
$HfNb_{24}O_{62}$	1.51×10^{-13}	S12	

Figure 4a illustrates the CV curves of the $Pr_{1/3}NbO_3$ ||Li half cell at 0.2, 0.3, 0.4 and 0.5 mV s⁻¹, respectively. It is found from Figure 4d that the cathodic/anodic peak current (*Ip*) during the intensive Nb^{4+}/Nb^{5+} redox reactions delivered a linear relationship with the square root of the sweep rate ($v^{0.5}$). Therefore, the Li⁺ diffusion coefficients (D_{Li}) of $Pr_{1/3}NbO_3$ can be calculated based on the Randles– Sevick Equation (3): S13

$$I_{\rm p} = 2.69 \times 10^5 \times n^{1.5} CSD_{\rm Li}^{0.5} v^{0.5}$$
 (3)

where n is the charge transfer number, S is the surface area of the electrode, and C is the allowed Li⁺ molar concentration in $Pr_{1/3}NbO_3$ crystals. The calculated apparent Li⁺ diffusion coefficients of $Pr_{1/3}NbO_3$ are 2.83×10^{-11} (lithiation) and 4.01×10^{-11} cm² s⁻¹ (lithiation).

Reference

- S1. R. J. Li, X. Z. Zhu, Q. F. Fu, G. L. Liang, Y. J. Chen, L. J. Luo, M. Y. Dong, Q. Shao, C. F. Lin, R. B. Wei, Z. H. Guo, *Chem. Commun.*, 2019, **55**, 2493.
- S2. A. J. Bard, L. R. Faulkner, *Fundamentals and Applications*, 2nd ed., Wiley, New York, 2001.
- S3. X. Z., Zhu, J. Xu, Y. P. Luo, Q. F. Fu, G. S. Liang, L. J. Luo, Y. J. Chen, C. F. Lin, X. S. Zhao, *J. Mater. Chem. A*, 2019, **7**, 6522.
- S4. Q. F. Fu, R. J. Li, X. Z. Zhu, G. S. Liang, L. J. Luo, Y. J. Chen, C. F. Lin, X. S. Zhao, Design, synthesis and lithium-ion storage capability of Al_{0.5}Nb_{24.5}O₆₂, *J. Mater. Chem. A*, 2019, 7, 19862.
- S5. X. Z. Zhu, H. J. Cao, R. J. Li, Q. F. Fu, G. S. Liang, Y. J. Chen, L. J. Luo, C. F. Lin, X. S. Zhao, *J. Mater. Chem. A*, 2019, 7, 25537.
- S6. L.Yang, X. Zhu, X. Li, X.Zhao, K. Pei, W. You, X. Li, Y. Chen, C. Lin, R. Che, *Adv. Energy Mater.* 2019, 9, 1902174.
- S7. X. Zhu, J. Xu, Y. Luo, Q. Fu, G. Liang, L. Luo, Y. Chen, C. Lin, X. Zhao, *J. Mater. Chem. A*, 2019, **7**, 6522–6532.
- S8. Q. Fu, R. Li, X. Zhu, G. Liang, L. Luo, Y. Chen, C. Lin, X. Zhao, Design, *J. Mater. Chem. A*, 2019, **7**, 19862–19871.
- S9 B. Babu, M.M. Shaijumon, Electrochimica Acta, 2020, 345, 136208.
- S10. X. Zhu, H. Cao, R. Li, Q. Fu, G. Liang, Y. Chen, L. Luo, C. Lin, X. Zhao, *J. Mater. Chem. A*, 2019, **7**, 25537–25547.
- S11. F. Wunde, F. Berkemeier, G. Schmitz, J. Power Sources, 2012, 215,109–115.
- S12. Q. Fu, H. Cao, G. Liang, L. Luo, Y. Chen, V. Murugadoss, S. Wu, T. Ding, C. Lin, Z. Guo, *Chem. Commun.*, 2020, 56, 619–622.
- S13. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn., Wiley, New York, USA 2001.