Supplementary Information

Rice Husk–Derived Porous Silicon Dioxide Fillers for Enhancing Ionic Conductivity in a Solid-State Electrolyte of Lithium–Sulfur Batteries Under Molecular Dynamic Calculation

Jyun-Ting Lee^{1, 2}, Meng-Chin Lin¹, Chyi-Ming Leu³, and Jyh Ming Wu^{1,4*}

¹Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.

² Ph.D. Program in Prospective Functional Materials Industry, National Tsing Hua University,

Hsinchu 300, Taiwan.

³Material and Chemical Research Laboratories, Industrial Technology Research Institute, Taiwan

⁴High Entropy Materials Center, National Tsing Hua University, Hsinchu 300, Taiwan.

*Correspondence to: wujm@mx.nthu.edu.tw(J.M.W.)

Fig. S1 The BET analysis of RH_{SiO2} .

Fig. S2 The XRD analysis of $\rm RH_{SiO2}.$

9					Spectrum 5	Element	Weight%	Atomic%
•						СК	17.00	23.95
						ОК	57.20	60.50
¢						Si K	25.80	15.55
0 2 Full Scale 11	4 1076 cts Cursor	6 r: 0.000	8	10 12	14 16 keV	Totals	100.00	

Fig. S3 The EDX analysis of $\rm RH_{SiO2}.$

Fig. S4 (a) The calculation model of ethylene oxide monomer and Li-ion with various distances. The energy curve as a function of the distance by (b) CASTEP calculation and (c) Forcite calculation.

Fig. S5 The diffusion coefficients of CPEs with various content of RH_{SiO2} from the molecular dynamics simulation.

Fig. S6 (a) The EIS measurement and (b) the ionic conductivity of RH_{SiO2} CPE with the various weight of LiTFSI. (c) CPE film with 1 g LiTFSI.

Fig. S7 (a) the AC impedance spectra of the Li/RH_{SiO2} CPE/Li cell from 10 mHz to 100 kHz before polarization and the steady-state has been reached. (b) Polarization curve of Li/RH_{SiO2} CPE/Li cell.

Fig. S8 The comparison of ionic conductivity versus the cost of precursor materials of our work and the recent reports in premier journals.

Fig. S10 The absolute value of the length-normalized potential of the (a) SPE and (b) RH_{SiO2} CPE electrolyte for various applied current densities.

Fig. S11 The SEM images of dendrite formation with (a) SPE and (b) RH_{SiO2} CPE at various current densities. Scale bar: 20 μ m.

Fig. S12 The thermogravimetric analysis (TGA) of CMK-3/S material.

a original	Element	Weight%	Atomic%
	СК	54.90	62.52
ø	ок	42.32	36.18
	Si K	1.70	0.83
	SK	1.08	0.46
0 2 4 6 8 10 12 14 14 Full Scale 9103 cts Cursor: 0.000 keV	Totals	100.00	
b Anode side	Element	Weight%	Atomic%
	СК	55.19	62.78
	ОК	42.13	35.98
	Si K	1.65	0.81
	S K	1.03	0.44
0 2 4 6 8 10 12 14 16 Full Scale 9103 cts Cursor: 0.000 keV	Totals	100.00	
C Cathode side	Element	Weight%	Atomic%
	СК	54.27	61.92
D	ОК	43.03	36.85
	Si K	1.14	0.55
	S K	1.57	0.67
0 2 4 6 8 10 12 14 16 Full Scale 9103 cts Cursor: 0.000 keV	Totals	100.00	

Fig. S13 The EDX analysis of the (a) original RH_{SiO2} CPE, the (b) top side, and (c) bottom side of RH_{SiO2} CPE after cycling.

Fig. S14 The stress-strain curves of $\mathrm{RH}_{\mathrm{SiO2}}$ CPE and the filler-free SPE.