Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Taming Polysulfides in Sulfur-based Batteries via Electrolyte-soluble Thiomolybdate Additives

Hooman Yaghoobnejad Asl¹, Amruth Bhargav¹, Arumugam Manthiram^{1,*}

¹ Materials Science and Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA.

Figure S1. Pawley refinement on the powder XRD pattern of the crystalline $(NH_4)_2MoO_2S_2$, indicating the phase purity of the product.

Figure S2. Optical absorption spectrum of an aqueous solution of $(NH_4)_2MoO_2S_2$ obtained through equation 1. The bars and numbers indicate previously reported absorption maxima for the pure $Mo_2O_2S_2$ dianion.

Figure S3. Schematic representation of the cell used for *in-situ* chronoamperometric analyses.

Figure S4. The effect of the thiomolybdate additives on the evolution of the coulombic efficiency in Li-S cells.

Figure S5. XPS data of Li anode exposed to $MoO_2S_2^{2-}$ (a) and MoS_4^{2-} (b) after 1,000 s of Ar-ion sputtering.

Figure S6. Electrochemical impedance spectra of pristine Li-S cells with various $MoX_2S_2^{2-}$ additives and that of the blank cell.

Figure S7. SEM image of the bucky paper carbon host used in this work for S cathode storage.

E	mpirical formula	$C_{10}H_{27}Mo_2N_3O_2S_8$
Fe	ormula weight	669.70
Т	emperature/K	100.02(11)
C	rystal system	monoclinic
S	pace group	$P2_1/c$
a/	Å	20.6130(14)
b/	′Å	9.7726(4)
c /	Å	12.3444(5)
α/	/0	90
β/	0	92.710(5)
γ/	0	90
V	olume/Å ³	2483.9(2)
Z		4
ρα	_{calc} g/cm ³	1.791
μ/	/mm ⁻¹	1.693
F((000)	1344.0
C	rystal size/mm ³	$0.406 \times 0.241 \times 0.042$
R	adiation	Mo Ka ($\lambda = 0.71073$)
20	Example for data collection /°	5.318 to 59.942
In	idex ranges	$-28 \le h \le 19, -13 \le k \le 13, -16 \le l \le 17$
R	eflections collected	18094
In	dependent reflections	$6193 [R_{int} = 0.0329, R_{sigma} = 0.0465]$
D	ata/restraints/parameters	6193/0/235
G	oodness-of-fit on F ²	1.088
Fi	inal R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0422, wR_2 = 0.0728$
Fi	inal R indexes [all data]	$R_1 = 0.0561, wR_2 = 0.0781$
La	argest diff. peak/hole / e Å ⁻³	1.33/-1.17

 Table S1. Crystal data and structure refinement for compound A.

Atom	X	У	Z	U _{eq}
Mo1	7515.9(2)	5144.5(3)	4711.2(3)	12.29(8)
Mo2	8667.4(2)	6583.7(3)	4300.5(2)	10.98(8)
01	7765.7(13)	3491(3)	4708(2)	19.2(6)
O2	9221.5(13)	5328(3)	4195(2)	16.7(6)
S 1	6520.2(5)	5394.9(12)	3640.0(8)	23.2(2)
S2	5708.1(5)	5343.5(12)	4597.3(9)	24.9(2)
S3	6050.2(5)	4198.8(11)	5879.1(9)	25.0(2)
S4	6881.2(5)	5294.8(11)	6321.2(8)	20.2(2)
S5	8176.5(5)	6426.3(10)	5933.0(7)	15.84(19)
S6	9253.8(5)	8576.7(10)	4938.5(8)	19.5(2)
S7	8966.6(5)	8548.2(10)	3297.7(8)	18.2(2)
S 8	7821.5(5)	6152.5(10)	3062.8(7)	15.86(19)
C1	6372(2)	1005(5)	4159(3)	26.1(10)
C2	7448(2)	-35(4)	4477(4)	26.2(10)
C3	6885(2)	979(4)	5978(3)	22.9(9)
C4	6488(2)	1148(4)	5167(5)	37.2(12)
C5	9116(2)	1184(4)	6687(3)	21.2(9)
C6	9312.5(19)	3592(4)	6326(3)	17.3(8)
C7	9525(2)	2689(4)	8155(3)	23.3(9)
C8	8405(2)	2921(4)	7422(3)	21.8(9)
C9	4982(2)	1518(4)	7008(4)	27.3(10)
C10	4731(2)	2358(5)	7868(4)	33.1(11)
N1	6800.3(16)	201(3)	4941(3)	17.8(7)
N2	9086.1(15)	2596(3)	7151(2)	13.8(6)
N3	5177(2)	853(4)	6341(4)	39.7(10)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for compound A. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mol	16.65(16)	8.92(14)	11.61(15)	0.11(12)	4.05(12)	1.07(12)
Mo2	15.45(16)	7.26(14)	10.19(15)	- 0.92(12)	0.38(12)	0.98(12)
01	22.6(15)	12.2(13)	23.6(15)	-0.5(11)	10.0(12)	0.8(11)
O2	19.6(14)	12.1(13)	18.7(14)	-1.2(11)	4.9(11)	0.8(11)
S1	17.7(5)	35.1(6)	16.8(5)	-2.2(4)	1.0(4)	-1.6(4)
S2	17.4(5)	33.3(6)	24.2(5)	-0.1(5)	3.8(4)	-2.1(4)
S3	25.2(6)	19.9(5)	30.7(6)	2.3(5)	10.5(5)	-1.5(4)
S4	21.4(5)	23.7(5)	15.9(5)	2.6(4)	6.0(4)	2.1(4)
S5	20.1(5)	17.7(5)	9.7(4)	-2.0(4)	0.4(4)	3.2(4)
S6	23.7(5)	14.3(5)	20.1(5)	-4.3(4)	-5.0(4)	-0.9(4)
S 7	22.9(5)	12.9(4)	18.4(5)	2.9(4)	-3.0(4)	-3.7(4)
S 8	19.5(5)	17.4(5)	10.7(4)	0.6(4)	0.3(4)	-5.2(4)
C1	27(2)	31(2)	20(2)	-0.3(19)	-4.1(18)	5.8(19)
C2	19(2)	25(2)	36(3)	-0.3(19)	11.0(19)	4.1(18)
C3	27(2)	22(2)	20(2)	5.2(18)	1.2(17)	2.6(18)
C4	31(3)	15(2)	67(4)	2(2)	12(2)	-4.4(19)
C5	34(2)	10.5(18)	20(2)	-3.3(16)	4.0(17)	-3.4(17)
C6	22(2)	14.2(18)	16.4(19)	5.4(15)	5.2(16)	0.1(15)
C7	36(3)	16.0(19)	17(2)	-0.4(17)	-6.7(18)	0.4(18)
C8	22(2)	22(2)	22(2)	-3.3(17)	8.2(17)	-3.8(17)
C9	22(2)	21(2)	38(3)	7(2)	-1(2)	-4.3(18)
C10	40(3)	24(2)	35(3)	0(2)	4(2)	4(2)
N1	17.0(17)	10.4(15)	26.4(18)	0.9(14)	5.2(14)	-0.4(13)
N2	17.9(17)	10.9(15)	12.8(15)	0.9(12)	3.8(12)	-0.4(12)
N3	31(2)	39(2)	49(3)	-6(2)	11(2)	0.4(19)

Table S3. Anisotropic Displacement Parameters (Å²×10³) for compound A. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom Atom	Length/Å	Ato	m Atom	Length/Å
Mo1 Mo2	2.8253(5)	S3	S4	2.0714(15)
Mol Ol	1.696(3)	S6	S 7	2.0834(14)
Mol Sl	2.4009(11)	C5	N2	1.496(5)
Mol S4	2.4351(10)	C6	N2	1.500(4)
Mol S5	2.3461(10)	C7	N2	1.502(5)
Mol S8	2.3726(10)	C8	N2	1.493(5)
Mo2 O2	1.685(3)	C1	N1	1.500(5)
Mo2 S5	2.3026(10)	C2	N1	1.496(5)
Mo2 S6	2.4052(10)	C3	N1	1.492(5)
Mo2 S7	2.3813(10)	C4	N1	1.499(5)
Mo2 S8	2.3022(10)	C9	C10	1.456(6)
S1 S2	2.0950(15)	C9	N3	1.138(6)
S2 S3	2.0364(16)			

Table S4. Bond Lengths for compound A

	Blank		MoS4 ²⁻		M0O ₂ S ₂ ²⁻	
	pristine	cycled	pristine	cycled	pristine	cycled
L1 (H)	2.94(9)E-7	2.48(2)E-7	2.81(7)E-7	1.29(6)E-7	3.01(9)E-7	4.86(8)E-7
R1 (Ω)	3.28(1)	3.97(7)	4.10(9)	6.46(4)	1.77(4)	1.10(8)
R2 (Ω)	1.39(7)E+2	42.8(1)	12.7(7)	9.98(9)	17.7(2)	9.8(8)
R3 (Ω)	42.6(3)	36.6(3)	55.0(1)	33.3(9)	28.4(1)	3.2(4)
CPE1-T	7.794(8)E-5	73.7(7)E-4	4.19(3)E-3	2.44(4)E-3	1.26(6)E-2	1.023(8)E-3
CPE1-P	0.73(5)	0.55(9)	0.56(2)	0.72(2)	0.28(8)	0.38(6)
CPE2-T	1.322(4)E-5	1.804(3)E-5	2.10(2)E-5	3.46(6)E-5	1.58(7)E-5	8.718(1)E-5
CPE2-P	0.88(2)	0.84(1)	0.79(8)	0.71(2)	0.89(1)	0.89(4)
$\Sigma(R_w^2)$	0.0311(3)	0.0082(2)	0.0146(2)	0.0179(4)	0.0177(3)	0.0112(1)

Table S5. Values of various components used in the fitting of electrochemical impedance spectra of Figure 10