Supporting Information

Direct Growth and Post-Treatment of Zeolitic Imidazolate Framework-67 on

Carbon Paper: Effective and Stable Electrode System for Electrocatalytic

Reaction

Anh Ngoc Nguyen, Ngoc Minh Tran, and Hyojong Yoo*

Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea

*Correspondence to: hjhaha73@hanyang.ac.kr

Figure S1. (a) XRD patterns and (b-d) SEM images of Co(OH)₂/CP samples with varied electrodeposition time, including (b) 10 minutes, (c) 30 minutes, (d) 60 minutes.

Figure S2. Nitrogen sorption measurement of CS@CH/CP 0.3.

Figure S3. High-resolution XPS spectrum for O 1s of CS@CH/CP 0.3.

Figure S4. OER polarization of $Co(OH)_2/CP$ with different electrodeposition time of 10, 30, and 60 minutes.

Figure S5. (a) OER polarization curves, (b) EIS profiles, and (c) C_{dl} values for CS@CH/CP samples etched with different thioacetamide concentrations, including 0.2 M, 0.3 M, 0.4 M, and 0.8M.

Figure S6. XRD patterns of ZIF-67@Co(OH)₂/CP, CS@CH/CP 0.2, and CS@CH/CP 0.3.

Figure S7. CV curves of CS@CH/CP etched with different thioacetamide concentrations: (a) 0.3 M, (b) 0.4 M and (c) 0.8 M.

Figure S8. Mass normalized OER polarization curves of CP, Co(OH)₂/CP, ZIF-67@Co(OH)₂/CP,

 Co_xS_y particle, RuO_2, CS@CH/CP, and $Co_xS_y|Co(OH)_2/CP$

Figure S9. Polarization curves of OER performance with CS@CH/CP and $Co_xS_y|Co(OH)_2/CP$ in N₂-saturated 1.0 M KOH solution: (a) OER polarization curves, (b) Tafel slopes, (c) Cdl values, (d) EIS profiles in the frequency range of $10^5 - 0.01$ Hz at 0.75 V.

Figure S10. CV curves of (a) CS@CH/CP, (b) Co(OH)₂/CP, (c) CP, (d) Co_xS_y particle, and (e)

 $Co_x S_y |Co(OH)_2/CP$ at elevated scan rate of 4, 8, 12, 16, and 20 mV s⁻¹.

Figure S11. Current density-time curve of Co_xS_y particle.

Figure S12. XRD pattern of CS@CH/CP after the stability test.

Figure S13. High-resolution XPS spectra for (a) Co 2p, (b) O 1s, and (c) S 2p in CS@CH/CP catalyst before and after the stability test.

Figure S14. Digital images recording the growth of (a) $ZIF-67(0.5)@Co(OH)_2/CP$, (b) $ZIF-67(1.0)@Co(OH)_2/CP$, and (c) $ZIF-67(2.0)@Co(OH)_2/CP$.

Catalyst	Substrate	Overpotential at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Refs
Ni _{2.3%} -CoS ₂ /CC	Carbon cloth	270 mV	119	1
CP/CTs/Co-S	Carbon paper	306 mV	72	2
CoP ₃ NSs/CC	Carbon cloth	291 mV	72	3
Zn-Co-S NS/CFP	Carbon paper	390 mV	136	4
Zn-Co-S NP/CFP	Carbon paper	330 mV	97	4
Zn-Co-S NN/CFP	Carbon paper	320 mV	55	4
P-CoMoS/CC	Carbon cloth	260 mV	70.2	5
CoS ₂ /CC	Carbon cloth	290 mV	67	6
NiCo ₂ S ₄ /CC	Carbon cloth	240 mV	90.9	7
CuCo ₃ S _z /CC	Carbon cloth	346 mV (at 50 mA cm ⁻²)	127	8
CoS_2	Carbon cloth	350 mV	107	9
$NiCo_2S_4@Co_1Ni_4-$	Carbon cloth	337 mV (at 100 mA cm ⁻²)	111.2	10
LDH/CC				
S-NiCoP/CC	Carbon cloth	320 mV (at 20 mA cm ⁻²)	150	11
h-Co _x S _y	Glassy carbon	320 mV	98	12
$Co_9S_8@Co_3O_4/NF$	Nickel foam	331 mV (at 100 mA cm ⁻²)	65.5	13
Co ₉ S ₈ /CC	Carbon cloth	312 mV	127	14
Co ₉ S ₈ /Co@CC	Carbon cloth	265 mV	77.96	15
FeCoNiP	Glassy carbon	200 mV	~70	16
NiCo-UMOFNs	Copper foam	189 mV	42	17
CS@CH/CP	Carbon paper	180 mV	96	This
				work

 Table S1. Comparison of OER performance of Co-containing electrocatalysts.

Sample	S wt% (Norm.)	Co wt% (Norm.)
CS@CH/CP 0.2	20.01	54.78
CS@CH/CP 0.3	26.90	47.90
CS@CH/CP 0.4	31.45	46.14
CS@CH/CP 0.8	41.26	40.14

Table S2: Elemental composition of CS@CH/CP 0.2, 0.3, 0.4, 0.8.

Turnover frequency (TOF) calculation:

$$TOF = \frac{J \times A}{4 \times F \times n}$$

Where J is current density (A cm⁻²), A is the geometry surface area of the electrode with the loaded catalyst, F is Faraday constant (96 500 A s mol⁻¹), and n is the total mole of active Co^{+2} in the catalyst. Assuming that all metal ions are active.

Geometrical area of electrode = 1 cm^2

Mass of loading catalyst = 2 mg cm^{-2}

 \rightarrow Mass of loading catalyst on 1 cm² electrode = 2 mg

For CS@CH/CP 0.3,

Co wt% (based on EDX result in Table S2) = 47.90 wt%

Current density at $\eta_{300 \text{ mV}} = 45 \text{ mA cm}^{-2}$

 \rightarrow Total mole of Co in the catalyst = 1.60 x 10⁻⁵ (mol)

 $45 \times 10^{-3} A \, cm^{-2} \times 1 \, cm^2$

 \rightarrow TOF (at the overpotential of 300 mV) = $4 \times 96485 \, A \, s \, mol^{-1} \times 1.60 \times 10^{-5} \, mol$ = 0.0073 s⁻¹

Using the same calculation, the TOF values of CS@CH/CP 0.2, CS@CH/CP 0.4, CS@CH/CP 0.8; Co(OH)₂/CP; RuO₂ and CoS particle are 0.0011; 0.0050; 0.0036; 0.0006; 0.0041; and 0.0008 s⁻¹, respectively.

REFERENCES

- 1 W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, *Electrochem. commun.*, 2016, 63, 60–64.
- J. Wang, H. X. Zhong, Z. L. Wang, F. L. Meng and X. B. Zhang, ACS Nano, 2016, 10, 2342–2348.
- T. Wu, M. Pi, X. Wang, W. Guo, D. Zhang and S. Chen, J. Alloys Compd., 2017, 729, 203–209.
- 4 X. Wu, X. Han, X. Ma, W. Zhang, Y. Deng, C. Zhong and W. Hu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 12574–12583.
- 5 C. Ray, S. C. Lee, K. V. Sankar, B. Jin, J. Lee, J. H. Park and S. C. Jun, *ACS Appl. Mater. Interfaces*, 2017, **9**, 37739–37749.
- 6 Y. H. Deng, C. Ye, B. X. Tao, G. Chen, Q. Zhang, H. Q. Luo and N. B. Li, *J. Power Sources*, 2018, **397**, 44–51.
- W. Zhu, M. Ren, N. Hu, W. Zhang, Z. Luo, R. Wang, J. Weng, L. Huang, Y. Suo and J.
 Wang, ACS Sustain. Chem. Eng., 2018, 6, 5011–5020.
- C. Mahala, R. Sharma, M. D. Sharma and S. Pande, *ChemElectroChem*, 2019, 6, 5301–5312.
- 9 J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao and J. Wang, *Nano-Micro Lett.*, 2019, **11**, 1–13.
- 10 F. Yuan, J. Wei, G. Qin and Y. Ni, J. Alloys Compd., 2020, 830, 154658.
- 11 L. N. Mai-Thi, N. V. Hoang-Thy and Q. B. Bui, Mater. Chem. Phys., 2021, 270, 124746.
- 12 Z. Zhang, S. Li, X. Bu, Y. Dai, J. Wang, X. Bao and T. Wang, *New J. Chem.*, 2021, **45**, 17313–17319.
- 13 X. Wang, Y. He, X. Han, J. Zhao, L. Li, J. Zhang, C. Zhong, Y. Deng and W. Hu, *Nano Res.*, 2022, **15**, 1246–1253.
- C. Zhan, Z. Liu, Y. Zhou, M. Guo, X. Zhang, J. Tu, L. Ding and Y. Cao, *Nanoscale*, 2019, 11, 3193–3199.
- 15 Z. Nie, T. Liu, Y. Chen, P. Liu, Y. Zhang, Z. Fan, H. He, S. Chen and F. Zhang,

Electrochim. Acta, 2022, 402, 139558.

- 16 J. Xu, J. Li, D. Xiong, B. Zhang, Y. Liu, K. H. Wu, I. Amorim, W. Li and L. Liu, *Chem. Sci.*, 2018, 9, 3470–3476.
- S. Zhao, Y. Wang, J. Dong, C. T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang,
 J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao
 and Z. Tang, *Nat. Energy*, 2016, 1, 1–10.