Supporting Information

Facile fabrication of high performance TiNb₂O₇ anode for large-scale electrical energy storage

Li-Qian Cheng, ^a Yijuan He, ^a Kai Chen, *^b Zhenhua Ma, ^a Ruiping Liu, ^a Na Liu ^b and Yichen Deng ^b

 ^a Department of Materials Science and Engineering, China University of Mining & Technology, Beijing, 100083, Beijing, China
^b QingTao (Kunshan) Energy Development Co., Ltd., 215334, Suzhou, China
E-mail: chenkai qingtao@163.com

Figure S1 Capacity retention of 1stTNO and 2ndTNO anodes at different rates.

Equation (S1)

$$I_P = 0.4463nFA_s cv^{1/2} \sqrt{\frac{nFD}{RT}}$$
(S1)

where I_p is the peak current in CV curves, *R* is the gas constant, *T* is the absolute temperature, *F* is the Faraday constant, *n* is the number of electrons transferred per molecule, *c* is the molar concentration of lithium ions in the solid, v is the scan speed, and A_s is the surface area of the electrode, which can be obtained from the product of *A* (the active surface area of the electrode), *m* (mass loading), and *S* (the surface area of TNO per unit weight).

Table 51 The Er diffusion elemenents of 1st 110 and 2nd 110 powders.		
Sample	D _{lithiation} (cm ² ·s ⁻¹)	D _{delithiation} (cm ² ·s ⁻¹)
1stTNO	6.581×10^{-17}	9.206×10^{-17}
2ndTNO	1.240× 10 ⁻¹⁶	1.348×10^{-16}

Table S1 The Li⁺ diffusion coefficients of 1stTNO and 2ndTNO powders.