Supplementary Information

Understanding the Effect of Sodium Polyphosphate on Improving the Chemical Stability of Ti₃C₂T_z MXene in Water

Shuohan Huang *a,b, Varun Natu^{c,d}, Jingyi Tao a, Yumin Xia a, Vadym N. Mochalin*b,e, Michel

W. Barsoum*^c

^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

^bDepartment of Chemistry, Missouri University of Science & Technology, Rolla, MO 65409, USA

^cDepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA

^dNational Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India

^eDepartment of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, MO 65409, USA The kinetics of degradation of $Ti_3C_2T_z$ -Air, $Ti_3C_2T_z$ -Ar, and $Ti_3C_2T_z$ -PP samples are shown in Figure 2. The data were fit by the corresponding exponential growth functions:

$$A(t) = 60133.1 - 59536.6 \cdot e^{-\left(\frac{t}{120.6}\right)} \text{ for } \text{Ti}_3\text{C}_2\text{T}_2\text{-Air}$$
$$A(t) = 54881.6 - 53657.1 \cdot e^{-\left(\frac{t}{182.4}\right)} \text{ for } \text{Ti}_3\text{C}_2\text{T}_2\text{-Ar}$$
$$A(t) = 10160.7 - 9653.2 \cdot e^{-\left(\frac{t}{88.4}\right)} \text{ for } \text{Ti}_3\text{C}_2\text{T}_2\text{-PP}$$

The chemical reactions of MXene oxidation and hydrolysis are represented by the equations separately:

hydrolysis of Ti₃C₂O₂ MXene

 $Ti_{3}C_{2}O_{2}+4H_{2}O=3TiO_{2}+2CH_{4}$ (1)

oxidation of Ti₃C₂O₂ MXene

 $2Ti_{3}C_{2}O_{2}+7O_{2}=6TiO_{2}+2CO+2CO_{2}$ (2)

Fig. S1. TEM image of freshly made $Ti_3C_2T_z$ MXene flakes.

Fig. S2. Visual observations of $Ti_3C_2T_z$ MXene in different environments over time (before shaking).

Fig. S3. Raman spectra of (a) fresh Ti₃C₂T_z MXene, (b) Ti₃C₂T_z MXene in different environments after 12 days, and (c) Ti₃C₂T_z MXene in different environments after 24 days. All samples were stored in a 70 °C oven. The peaks at ~520 cm⁻¹ apparent in some spectra are reflecting the signal from the Si wafer underneath the samples.

Fig. S4. SEM image of freshly made $Ti_3C_2T_z$ MXene film.

Assuming a MXene sheet with lateral dimensions of 0.8 µm length by 0.5 µm width

Perimeter

 $p = 2 \times 0.8 + 2 \times 0.5 = 2.6 \ \mu m$

Assuming sodium polyphosphate (PP) chain length ≈ 6 Å (this distance was calculated from the distance between the 1st and 3rd P atom)

Number of PP molecules needed to cap all edges of 1 MXene sheet

= $2.6/0.0006 \approx 4333$ molecules or $\approx 7.2 \times 10^{-21}$ moles of PP

Volume of 1 MXene sheet assuming $0.001 \ \mu m (1 \ nm)$ thickness

 $V = 0.8 \times 0.5 \times 0.001 = 4 \times 10^{-4} \,\mu m^3$

Density of MXene

 $\approx 4.93 \frac{g}{cm^3} \approx \frac{4.93 \times 10^{-12} \frac{g}{\mu m^3}}{(\text{density of MXene was assumed to be same as the density of cubic TiC)}}$

Mass of 1 MXene sheet

$$= \frac{4.93 \times 10^{-12} \frac{g}{\mu m^3} \times 4 \times 10^{-4} \mu m^3}{10^{-4} \mu m^3} = 1.9 \times 10^{-15} g \approx 2 \times 10^{-15} g$$

Therefore 7.2×10^{-21} moles of PP are needed per $2 \times 10^{-15}g$ of MXene

 $= 3.6 \times 10^{-6}$ moles of PP per g of MXene

 ≈ 0.0015 g of PP/ MXene sheet (Molar mass of PP = 367.9 g/mol)

As MXene sheet is ~ 1 nm thick and PP molecule thickness ≈ 0.3 nm (maximal distance between 2 O atoms connected to the same P atom) ≈ 3 PP molecules also need to be stacked vertically along a MXene sheet edge as well for complete coverage.

 $\approx 0.0015 \times 3 \approx 0.005 g$ of PP per g of MXene

