Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

**Electronic Supplementary Information For:** 

## Drastic performance improvement of indoor organic photovoltaics using novel laminated homojunction holetransport layer

Tae Hyuk Kim<sup>a</sup>, Justin Scott Neu<sup>b</sup>, Sung Hyun Kim<sup>a</sup>, Muhammad Ahsan Saeed<sup>a</sup>, Wei You\*<sup>b</sup> & Jae Won Shim\*<sup>a</sup>

Equivalent circuit model

The performance of the OPVs is often described with a single-diode equivalent circuit model, and

including one current source and two parasitic resistances, a shunt resistance ( $R_P$ ) and a series resistance ( $R_S$ ) under illumination. The  $R_P$  is related to the leakage current, recombination, *etc.*, and the  $R_S$  is originated from the resistive components of the device such as resistance of electrodes and bulk resistance of photoactive layers.

By using the Shockley Eq. <sup>1,2</sup>, the circuit model under illumination can be formulated, the  $J_{SC}$  and the  $V_{OC}$  can be expressed as follows,

, where  $J_{ph}$  is the photo-current density,  $J_0$  is the reverse saturation current density, *n* is the ideality factor, *q* is the elementary charge number (1.602 × 10<sup>-19</sup> C), *k* is the Boltzmann constant (8.617 × 10<sup>-5</sup> eV/K), *T* is temperature, and *A* is the area of the photoactive region. Also, when  $R_P \approx R_S$  and  $J_{ph} = J_{SC}$ , Eq. (2) can be written as  $V_{OC} \approx \frac{kT}{q} \ln \left\{ 1 + \frac{J_{ph}}{J_0} \right\}$ , which seems to be independent of  $R_S$  and  $R_P$ . The  $R_SA$  and  $R_PA$  values were extracted from the inverse slope of the *J*-*V* characteristics under illumination in the range of 0.96 – 1.0 V and near 0 V (close to the  $J_{SC}$  point), respectively. The FF ( $J_{max} \times V_{max}/J_{SC} \times V_{OC}$ ) can be shown as a function of the normalized  $V_{OC}$  ( $v_{OC} = eV_{OC}/nkT$ ), normalized  $R_S$  ( $r_S = R_S/R_{CH}$ ), and normalized  $R_P$  ( $r_P = R_P/R_{CH}$ ), where the characteristic resistance ( $R_{CH}$ ) is defined as  $R_{CH} = V_{OC}/(J_{SC}A)$ . The equation for the ideal FF<sub>0</sub> of the OPVs is expressed as follows:

$$FF_0 = \frac{v_{OC-ln[m]}(v_{OC}+0.72)}{v_{OC}+1} - (3)$$

where,  $R_{\rm s} = 0$  and  $R_{\rm P} = \infty$ . However, owing to the parasitic resistance effects, the real FF value should deviate from the ideal FF<sub>0</sub>, and thus, semi-empirical expressions with the parasitic effects are shown below:

$$FF_{S} = FF_{S}(1 - 1.1r_{S}) + 0.19r_{s}^{2}, \quad \left(0 \le r_{S} \le 0.4, \frac{1}{r_{p}} = 0\right) \quad -(4)$$
  
and,  
$$FF_{SP} = FF_{S}\left\{1 - \frac{(v_{OC} + 0.7)FF_{S}}{v_{OC} \quad r_{p}}\right\}, \quad \left(0 \le r_{S} + \frac{1}{r_{p}} \le 0.4\right) \quad -(5).$$
  
$$V_{OC} = \frac{E_{gqp}}{q} - \frac{kT}{q} \ln\left\{\frac{(1 - P_{D})\gamma N_{C}^{2}}{P_{D}G}\right\} - ---- (6)$$

where  $E_{gap}$  is the energy difference between the HOMO-donor and LUMO-acceptor, q is the elementary charge, k is the Boltzmann constant, T is temperature in Kelvin,  $P_D$  is the dissociation

probability of the electron (e)-hole (h) pairs,  $\gamma$  is the Langevin recombination constant,  $N_C$  is the effective density of states, and G is the generation rate of bound e-h pairs.



Fig. S1. Parasitic resistance effects based on the single-diode equivalent circuit model.



Fig. S2. The presence of PTQ10 is verified based on the top-down view of each SEM image.



Fig. S3. Photovoltaic performance of the PTQ10-based OPV with different concentration.



Fig. S4. 2D AFM grain-count drawings (a) PTQ10:Y6 and (b) PTQ10:Y6/PTQ10



**Fig. S5.** Complex refractive index (n, k) of PTQ10 transport layers used for the finite-difference time-domain simulations.



**Fig. S6.** Power-absorption profile of multicomponent photoactive blends obtained by the finite-difference time-domain method.



**Fig. S7.** Photovoltaic performance of Reference and Control devices under indoor (LED 1000 lx; FL 1000 lx) luminance.



Fig. S8. Device stability of Reference and Control devices.



**Fig. S9.** (a) Photovoltaic performance of FTAZ-based device under outdoor and indoor (LED 1000 lx; FL 1000 lx; HL 1000 lx) luminance, (b) EQE spectra.

| Light source                             | PTQ10<br>concentration<br>(mg/ml) | V <sub>oc</sub><br>(mV) | J <sub>sc</sub><br>(1-sun: mA/cm²)<br>(Indoor: μA/cm²) | FF<br>(%)  | PCE<br>(%)    |
|------------------------------------------|-----------------------------------|-------------------------|--------------------------------------------------------|------------|---------------|
| 1-sun                                    | 1                                 | 841 ± 11                | 26.9 ± 1.2                                             | 66.8 ± 1.1 | 15.1 ± 0.5    |
|                                          | 3                                 | 740 ± 8                 | 19.7 ± 0.3                                             | 45.1 ± 1.5 | $6.6 \pm 0.4$ |
| (10011107/c111)                          | 5                                 | 774 ± 18                | 15.8 ± 2.7                                             | 41.7 ± 1.7 | 5.1 ± 0.8     |
| LED 1000 lx<br>(0.23mW/cm <sup>2</sup> ) | 1                                 | 698 ± 2                 | 119.5 ± 0.3                                            | 72.8 ± 0.1 | 26.4 ± 0.1    |
|                                          | 3                                 | 651 ± 3                 | 113.9 ± 0.1                                            | 54.8 ± 0.1 | 17.7 ± 0.1    |
|                                          | 5                                 | 516 ± 5                 | 110.2 ± 0.1                                            | 34.9 ± 0.4 | 8.6 ± 0.1     |
| FL 1000 lx<br>(0.27mW/cm <sup>2</sup> )  | 1                                 | 703 ± 2                 | 126.0 ± 3.1                                            | 72.9 ± 0.3 | 23.9 ± 0.6    |
|                                          | 3                                 | 649 ± 2                 | 114.1 ± 0.9                                            | 54.0 ± 0.1 | 14.8 ± 0.2    |
|                                          | 5                                 | 60 ± 7                  | $104.9 \pm 0.7$                                        | 23.8 ± 0.6 | $0.6 \pm 0.1$ |
| HL 1000 lx<br>(7.0mW/cm <sup>2</sup> )   | 1                                 | 785 ± 8                 | 685.2 ± 2.5                                            | 74.0 ± 0.3 | 5.7 ± 0.2     |
|                                          | 3                                 | 726 ± 2                 | 507.5 ± 0.2                                            | 61.4 ± 0.1 | 3.2 ± 0.1     |
|                                          | 5                                 | 191 ± 4                 | 538.6 ± 3.2                                            | 26.5 ± 0.5 | $0.4 \pm 0.1$ |

**Table S1.** Photovoltaic performance parameter of the PTQ10-based OPV with different concentration.

**Table S2.** In finite-difference time-domain (FDTD) simulation, the ideal current density of Reference and Control devices under halogen (HL) lighting.

|                  | J <sub>ph,Ideal</sub> |           |  |  |
|------------------|-----------------------|-----------|--|--|
| Sample name      | HL 500lx              | HL 1000lx |  |  |
|                  | (µA/cm²)              | (µA/cm²)  |  |  |
| Reference device | 659.114               | 973.944   |  |  |
| Control device   | 647.352               | 956.809   |  |  |

**Table S3.** Photovoltaic performance parameter of the PTQ10-based OPV under indoor (LED 1000lx; FL 1000lx) luminance.

|  | Light source | Structure | <b>V</b> oc | J <sub>sc</sub> | FF | PCE |
|--|--------------|-----------|-------------|-----------------|----|-----|
|--|--------------|-----------|-------------|-----------------|----|-----|

|                                          |                     | (mV)    | (µA/cm²)    | (%)        | (%)            |
|------------------------------------------|---------------------|---------|-------------|------------|----------------|
| LED 1000 lx<br>(0.23mW/cm <sup>2</sup> ) | Reference<br>device | 675 ± 2 | 123.4 ± 0.1 | 68.3 ± 0.3 | 23.7 ± 0.1     |
|                                          | Control device      | 698 ± 2 | 119.5 ± 0.3 | 72.8 ± 0.1 | 26.4 ± 0.1     |
| FL 1000 lx<br>(0.27mW/cm <sup>2</sup> )  | Reference<br>device | 680 ± 2 | 124.2 ± 2.0 | 67.5 ± 0.4 | 21.1 ± 0.4     |
|                                          | Control device      | 703 ± 2 | 126.0 ± 3.1 | 72.9 ± 0.3 | $23.9 \pm 0.6$ |

**Table S4.** Photovoltaic performance parameter of the FTAZ-based OPV under outdoor and indoor (LED 1000 lx; FL 1000 lx; HL 1000 lx) luminance.

| Light source                              | V <sub>oc</sub><br>(mV) | J <sub>sc</sub><br>(1-sun: mA/cm²)<br>(Indoor: μA/cm²) | FF<br>(%)     | PCE<br>(%) |
|-------------------------------------------|-------------------------|--------------------------------------------------------|---------------|------------|
| 1-sun<br>(100 mW/cm²)                     | 833 ± 2                 | 27.1 ± 0.1                                             | 66.6 ±<br>0.2 | 15.0 ± 0.1 |
| LED 1000 lx<br>(0.23 mW/cm <sup>2</sup> ) | 688 ± 4                 | 120.7 ± 4.3                                            | 69.0 ±<br>0.8 | 24.9 ± 0.3 |
| FL 1000 lx<br>(0.27 mW/cm <sup>2</sup> )  | 692 ± 2                 | 125.4 ± 2.2                                            | 68.5 ±<br>0.9 | 22.0 ± 0.2 |
| HL 1000 lx<br>(7.0 mW/cm <sup>2</sup> )   | 756 ± 3                 | 650.5 ± 15.4                                           | 67.6 ±<br>0.1 | 4.7 ± 0.1  |

## References

- 1 J. S. Goo, J. H. Lee, S. C. Shin, J. S. Park and J. W. Shim, *J. Mater. Chem. A*, 2018, **6**, 23464–23472.
- 2 B. Kippelen and J. L. Brédas, *Energy Environ. Sci.*, 2009, **2**, 251–261.