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1 Energy cutoff and k-point mesh convergence testing
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Figure S1: Convergence of the total energy of the primitive cell with respect to the plane-wave cutoff. The

energy cutoff selected for the calculations was 480 eV.
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Figure S2: Convergence of the total energy of the primitive cell with respect to k-point sampling density. A

k-point mesh with 5 × 5 × 5 subdivisions was selected for the calculations.

2



k3,3,1
k4,4,1

k5,5,1
k6,6,1

k7,7
,1

k8,8,1

−8.9020

−8.9015

−8.9010

−8.9005

−8.9000

−8.8995

−8.8990

en
er

gy
 p

er
 a

to
m

 /
 e

V

0.00

0.25

0.50

0.75

1.00

1.25

1.50

di
ffe

re
nc

e 
in

 e
ne

rg
y 

/ 
m

eV

Figure S3: Convergence of the total energy of the primitive cell with respect to k-point sampling density. A

k-point mesh with 5 × 5 × 1 subdivisions was selected for the calculations.
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2 Brillouin zone
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Figure S4: Reciprocal spaces of the I4/mmm and P4/mmm space groups as per Bradley-Cracknell formalism.1
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Figure S5: Reciprocal space of the I4/mmm space group as per seekpath formalism.2
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3 Extended electronic band structure
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Figure S6: Electronic band structure calculated using HSE06 and the SeeK-path band path, which contains

additional wavevectors compared to the Bradley-Cracknell path.2
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4 Band alignment calculations

The band alignment was calculated according to the core-vacuum alignment scheme derived by Wei and Zunger.3

The ionisation potential (IP) and electron affinity (EA) were calculated as:

IP = (Evac − Ecore,slab) − (EV BM − Ecore,bulk) (1)

EA = IP − Eg (2)

where Evac and Ecore,slab are the energies of the vacuum and the O 1s core level in the bulk-like surface slab,

respectively, EV BM is the valence band maximum of the bulk and Ecore,bulk is the bulk O 1s core energy.

To calculate the energies of the surface slab, the surfaxe4 package was used to cleave the (001) slab from

the HSE06-relaxed conventional unit cell. As we are interested in the band alignment of the bulk, the slab was

not relaxed and only a static calculation was performed.
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5 Phonon supercell convergence testing
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Figure S7: Phonon dispersions calculated from second-order force constants obtained in 3 × 3 × 1, 3 × 3 × 2,

4 × 4 × 1, 4 × 4 × 2, 4 × 4 × 3 and 5 × 5 × 2 supercells, plotted with ThermoPlotter.5 The high-symmetry

path is based on the Bradley-Cracknell formalism.1
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Figure S8: Convergence of the lattice thermal conductivity κl convergence at 300 K and 1000 K with respect to

the q-point mesh sampling density.
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6 Projection of the symmetry inequivalent O eigen-displacements

onto the phonon dispersion
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Figure S9: Phonon dispersion computed using a 5 × 5 × 2 supercell expansion showing the projection of the

mode eigen-displacements onto the axial (a, green) and equatorial O atoms (b, purple). The darker the colour,

the greater the contribution from those eigen-displacements. The high-symmetry paths were created using

Bradley-Cracknell formalism.1

7 AMSET settings

Polar optical phonon frequency: 8.51 THz

Elastic constant matrix (GPa):

283.017 88.337 108.044 0 0 0

88.337 283.017 108.044 0 0 0

108.044 108.044 222.213 0 0 0

0 0 0 46.486 0 0

0 0 0 0 46.486 0

0 0 0 0 0 109.067


(3)

Static dielectric constant (ε0): 
36.665 0 0

0 36.665 0

0 0 23.630

 (4)

High-frequency dielectric constant (ε0): 
5.361 0 0

0 5.361 0

0 0 5.489

 (5)
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8 Scattering rates
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Figure S10: Scattering rates as a function of energy for carrier concentrations and temperatures of (a) n =

1.33 × 1020 cm−3 and T = 300 K and (b) n = 1.78 × 1020 cm−3 and T = 600 K. The marker colours are

weighted by Fermi-Dirac distribution such that those with darker colours make a larger contribution to the

transport properties. Acoustic deformation potential (ADP) scattering is shown in green, ionisation impurity

scattering (IMP) scattering in pink and polar optical phonon (POP) scattering in blue.
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