Investigation of low molecular weight sulfur-limonene polysulfide electrodes in Li-S cells

Lisa Djuandhi,*a Bruce C. C. Cowie,^b Aditya Rawal*c and Neeraj Sharma^a

^a School of Chemistry, UNSW Sydney, NSW 2052, Australia

^b Australian Synchrotron, Clayton, Victoria 3168, Australia.

^c Mark Wainwright Analytical Centre, UNSW Sydney, NSW 2052, Australia

Lithium-sulfur battery; mechanism; NMR; K-Edge NEXAFS; spectroscopy; cathode materials; inverse vulcanization; elemental sulfur; polymer; limonene; polysulfide

Supporting information

Thermogravimetric analysis of poly(S-r-limonene) (10 wt. % limonene)

Figure S 1 – Thermogravimetric analysis (TGA) of poly(S-*r*-limonene) prepared with 10 wt. % limonene crosslinker showing true wt. % of sulfur to be > 90 %. The measurement was conducted using a Thermogravimetric Analyzer STAR system (METTLER TOLEDO) under N₂ gas at a heating rate of 10 °C min⁻¹.

Figure S.2 – Solution state ¹H NMR spectra of poly(S-*r*-limonene) in CDCl₃ prepared with **a**) 50, **b**) 40, **c**) 30, **d**) and 20 wt. % limonene crosslinking monomer and corresponding elemental sulfur amounts. Asterisks denote residual solvent peaks unrelated to the copolymer analytes.

Figure S.3 – Close up on the aromatic region of poly(S-*r*-limonene) spectra shown in Figure S.2.

Please do not adjust margins

Figure S.4 – X-ray powder diffraction pattern of poly(S-*r*-limonene) prepared using 10 wt. % limonene (blue crosses) and a model of the data (green trace) calculated *via* Rietveld refinement of α -S₈ (orthorhombic α -S₈ F*ddd*, ICDD, No. 01-078-1888) and β -S₈ (monoclinic β -S₈ *P2*₁/*c*, ICDD No. 01-071-0137). A fit of only the α -S₈ (black peaks markers) with no contributions from β -S₈ adequately represents the data.

Figure S.5 – Saturation recovery ⁷Li NMR spectra acquired at $\tau = 10$ ms, 20 ms, 30 ms, 40 ms, 50 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 350 ms, 400 ms, 450 ms, 500 ms, 550 ms, 600 ms, 700 ms, 800 ms, 900 ms, 1 s, 1.25 s, 1.5 s, 1.75 s, 2 s, 2.5 s, 3 s, 4 s, 5 s, 7 s, 10 s, and 30 s.

Figure S.6 – Peak deconvolution of ⁷Li spectra acquired with **a**) $\tau = 10$ ms signal recovery and **b**) $\tau = 30$ s signal recovery for T_1 saturation recovery measurements.

Figure S.7 – Single- phase exponential decay fits to normalized solid-state ⁷Li saturation recovery NMR signal intensity values (M_z/M_0 , black crosses) at peak *centers* $\delta_{7\text{Li}} = 3.51$, 2.86, 2.39, and 1.23 ppm plotted *vs* $\tau = 10$ ms, 20 ms, 30 ms, 40 ms, 50 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 350 ms, 400 ms, 450 ms, 500 ms, 550 ms, 600 ms, 700 ms, 800 ms, 900 ms, 1 s, 1.25 s, 1.5 s, 1.75 s, 2 s, 2.5 s, 3 s, 4 s, 5 s, 7 s,

$$\frac{M_z}{M_0} = 1 - e^{\frac{-\tau}{T_1}}$$

10 s, and 30 s. The black traces represent fits to the function M_0 to determine T_1 relaxation times. The dotted lines represent 95% confidence intervals.

8 | J. Mater. Chem. A, 2022, 00, 1-3

Journal of Materials Chemistry A

Figure S.8 – Two-phase exponential decay fits to normalized solid-state ⁷Li saturation recovery NMR signal intensity values (M_z/M_0 , black crosses) at peak *centers* $\delta_{7\text{Li}} = 3.51$, 2.86, 2.39, and 1.23 ppm plotted *vs* $\tau = 10$ ms, 20 ms, 30 ms, 40 ms, 50 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 350 ms, 400 ms, 450 ms, 500 ms, 550 ms, 600 ms, 700 ms, 800 ms, 900 ms, 1 s, 1.25 s, 1.5 s, 1.75 s, 2 s, 2.5 s, 3 s, 4 s, 5 s, 7 s,

$$\frac{M_z}{M_0} = 1 - (Ae^{\frac{-\tau}{T_{1_a}}} + (1 - A)e^{\frac{-\tau}{T_{1_b}}})$$

10 s, and 30 s. The black traces represent fits to the function M_0

to determine

T₁ relaxation times. The dotted lines represent 95% confidence intervals.

This journal is © The Royal Society of Chemistry 2022

Table S.1 – T_1 values calculated from **a**) single-phase and **b**) two-phase exponential decay fits to the saturation recovery measurements for lithium environments I, II, and III shown in the appendix **Figure S.7** and **Figure S.8** respectively. A fit to lithium environment II using the two-phase exponential decay function did not yield conclusive parameter values which have been omitted.

$$\frac{M_z}{M_0} = 1 - e^{\frac{-\tau}{T_1}}$$

a) Single-phase exponential decay

	$\delta_{7\mathrm{Li}} (\mathrm{ppm})$	T_1 (ms)	R _{sq}
Ι	3.53	2070(90)	0.993
II	2.96	5200(300)	0.9823
III	1.41	2800(700)	0.6303

$$\frac{M_z}{M_0} = 1 - (Ae^{\frac{-1}{T_{1_a}}} + (1 - A)e^{\frac{-1}{T_{1_b}}})$$

b) Two-phase exponential decay

	$\delta_{7\mathrm{Li}}(\mathrm{ppm})$	A (%)	T_{1a} (ms)	T_{1b} (ms)	R _{sq}	$T_{1\text{mean}}$ (ms)
Ι	3.53	18(4)	8000(1000)	1590(60)	1.000	2600(600)
II	2.96	-	-	-	-	-
III	1.41	48(4)	15000(3000)	700(100)	0.985	8000(2000)