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Figures and Captions
Fig.S1 TG curves of the as-resulted samples about FP (a), FPS-1 (b) and FPS-2 (c)
Fig.S2 The analysis of elements valence: Full XPS spectra of FP (a) and FPS-1 (d),
Fe2p HR-XPS of FP (b) and FPS-1 (e), P2p HR-XPS of FP (c)
Fig.S3 SEM, EDS, Mapping images of FP (A1-A3), FPS-1 (B1-B6), FPS-2 (C1, C2)
Fig.S4 TEM images of FP (A1, A2), FPS-1 (B1, B2), FPS-2 (C1, C2)
Fig.S5 The cycling stability of FPS-2 and CA-FPS-2 at 10.0 A g! (a) and 20.0 A g'!
(b)
Fig.S6 The long-term cycling stability of CA-FPS-2 at 10.0 A g-! and LT -30°C
Fig.S7 The long-term CV curves at 2.0 mV s! from 15t to 30®
Fig.S8 The linear relation between log (i) and log (v)
Fig.S9 Nyquist Plots at various cycles and the relative linear of w2 with Z* for FP
(A1, A2), FPS-1 (B1, B2), FPS-2 (C1, C2)
Fig.S10 Nyquist Plots at various cycles and the relative linear of w/> with Z* for,
CA-FPS-2 (A1, A2) at RT, CA-FPS-2 (B1, B2) at LT
Fig.S11 The models of coordination with different contents before optimization and
after optimization about Cu/DEGDME 1/1 (A1, A2), 1/2 (B1, B2), 1/3 (C1, C2) and
1/4 (D1, D2)
Fig.S12 SEM images of active materials, and relative Cu foils after 2000 cycles for
FP (A1-A2), FPS-1 (B1-B2)
Fig.S13 Mapping images of FPS-2 after 2000 cycles

Fig.S14 Used Celgard as separations, the cycling stability of FPS-2 at 5.0 A g'!



Fig.S15 SEM and Mapping images of separation (glass fiber) after 2000 cycles about
FP (a), FPS-1 (b), the optical images in the inset of separations

Fig.S16 Used Celgard as separations after 300 cycles: SEM images of Cu-foils (A1),
active materials (A2), separations-Celgard (B1, B2), the corresponding optical images

in the inset of separations
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Fig.S1 TG curves of the as-resulted samples about FP (a), FPS-1 (b) and FPS-2 (c)
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Fig.S2 The analysis of elements valence: Full XPS spectra of FP (a) and FPS-1 (d),
Fe2p HR-XPS of FP (b) and FPS-1 (e), P2p HR-XPS of FP (c)
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Fig.S3 SEM, EDS, Mapping images of FP (A1-A3), FPS-1 (B1-B6), FPS-2 (C1, C2)




Fig.S4 TEM images of FP (A1, A2), FPS-1 (B1, B2), FPS-2 (C1, C2)
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Fig.S5 The cycling stability of FPS-2 and CA-FPS-2 at 10.0 A g'!' (a) and 20.0 A g!
(b)
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Fig.S6 The long-term cycling stability of CA-FPS-2 at 10.0 A g and LT -30°C
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Fig.S7 The long-term CV curves at 2.0 mV s! from 15t to 30
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Fig.S8 The linear relation between log (i) and log (v)
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Fig.S9 Nyquist Plots at various cycles and the relative linear of w2 with Z’* for FP
(A1, A2), FPS-1 (B1, B2), FPS-2 (C1, C2)
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Fig.S10 Nyquist Plots at various cycles and the relative linear of w/> with Z’* for,
CA-FPS-2 (A1, A2) at RT, CA-FPS-2 (B1, B2) at LT
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Fig.S11 The models of coordination with different contents before optimization and
after optimization about Cu/DEGDME 1/1 (A1, A2), 1/2 (B1, B2), 1/3 (C1, C2) and
1/4 (D1, D2)
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Fig.S12 SEM images of active materials, and relative Cu foils after 2000 cycles for
FP (A1-A2), FPS-1 (B1-B2)
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Fig.S13 Mapping images of FPS-2 after 2000 cycles
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Fig.S14 Used Celgard as separations, the cycling stability of FPS-2 at 5.0 A g-!
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Fig.S15 SEM and Mapping images of separation (glass fiber) after 2000 cycles about
FP (a), FPS-1 (b), the optical images in the inset of separations
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Fig.S16 Used Celgard as separations after 300 cycles: SEM images of Cu-foils (A1),
active materials (A2), separations-Celgard (B1, B2), the corresponding optical images
in the inset of separations
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