Supplementary Information

## Graphene-encapsulated selenium@polyaniline nanowires with three-dimensional hierarchical architecture for highcapacity aluminum-selenium batteries

Haiping Lei,<sup>a</sup> Jiguo Tu,<sup>\*b</sup> Suqin Li,<sup>a</sup> Zheng Huang,<sup>b</sup> Yiwa Luo,<sup>a</sup> Zhijing Yu,<sup>a</sup> Shuqiang Jiao<sup>\*a,b</sup>

<sup>a</sup> School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.

<sup>b</sup> State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.

## **Corresponding authors:**

\*E-mail addresses: sjiao@ustb.edu.cn (S. Jiao) guo15@126.com (J. Tu).



Fig. S1 (a) SEM image of PANI. (b) XRD pattern of PANI.



Fig. S2 TG curves of the as-prepared Se nanowires, Se@PANI, and Se@PANI@G.



Fig. S3 Se 3d XPS spectra of as-prepared Se nanowires.



Fig. S4 (a) Se 3d XPS spectra of as-prepared Se@PANI. (b) N 1s XPS spectra of as-prepared Se@PANI.



Fig. S5 (a,b) SEM images of as-prepared Se nanowires. (c,d) SEM images of as-prepared Se@PANI. (e,f) SEM images of as-prepared Se@PANI@G.



**Fig. S6** (a) SEM images of as-prepared Se nanowires and the corresponding histogram of Se nanowires diameter. (b) SEM images of as-prepared Se@PANI and the corresponding histogram of Se@PANI diameter. (c) SEM images of as-prepared Se@PANI@G and the corresponding histogram of Se@PANI@G diameter.



Fig. S7 (a) TEM images of Se@PANI. (b) HAADF (High-Angle Annular Dark Field)-STEM image of the Se@PANI nanowires. (c-e) The corresponding elemental mapping images.



Fig. S8 (a) TEM images of Se@PANI@G. (b) HAADF-STEM image of the Se@PANI@G

nanowires. (c-e) The corresponding elemental mapping images.



Fig. S9 (a) The open circuit potential of Al/Se battery before cycling. (b) The open potential of Al/Se@PANI battery before cycling. (c) The open potential of Al/Se@PANI@G battery before cycling.



**Fig. S10** (a) Al 2p, Cl 2p, and (b) Se 3d, XPS spectra of Se@PANI electrodes after charging to 2.1 V and discharging to 0.4 V.



Fig. S11 The structures of  $Se_2Cl_2$  and PANI.

PANI@G



Fig. S12 The optimized structures of PANI@G.

|                                        | Total energy/eV |
|----------------------------------------|-----------------|
| Se <sub>2</sub> Cl <sub>2</sub>        | -155720.4302    |
| PANI                                   | -54531.86008    |
| PANI@G                                 | -236923.1305    |
| PANI@Se <sub>2</sub> Cl <sub>2</sub>   | -210254.4815    |
| PANI@G@Se <sub>2</sub> Cl <sub>2</sub> | -392647.2731    |

Table S1The total energies of  $Se_2Cl_2$ , PANI, PANI@G, PANI@Se\_2Cl\_2, andPANI@G@Se\_2Cl\_2.

| 1                                                                                                  | •                                                         |                                          |                         |                                                 |                                             |        |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|-------------------------|-------------------------------------------------|---------------------------------------------|--------|
| Positive electrode                                                                                 | Electrolyte                                               | Separator                                | Voltage<br>range<br>(V) | Discharge<br>capacity<br>(mAh g <sup>-1</sup> ) | Current<br>density<br>(mA g <sup>-1</sup> ) | Cycles |
| Se/graphene<br>aerogel<br>(Se/GA) <sup>[1]</sup>                                                   | AlCl <sub>3</sub> /Et <sub>3</sub> NHCl,<br>1.5:1 by mole | glass<br>fiber(GF/<br>D)                 | 0.01-<br>2.3            | ~176                                            | 1000                                        | 50     |
| Se/GA <sup>[1]</sup>                                                                               | AlCl <sub>3</sub> /Et <sub>3</sub> NHCl,<br>1.5:1 by mole | CNT (O-<br>CNT)<br>modified<br>separator | 0.01-<br>2.3            | 395                                             | 1000                                        | 200    |
| MCF-7/Se <sup>[2]</sup>                                                                            | EMImCl/AlCl <sub>3</sub> ,<br>1: 1.1 by mole              |                                          | 1.0-2.3                 | 152                                             | 500                                         | 2000   |
| TiO <sub>2</sub> @Se-<br>rGO <sup>[3]</sup>                                                        | EMImCl/AlCl <sub>3</sub> ,<br>1: 1.3 by mole              | Whatman<br>glass fiber<br>(GF/C)         | 0.1-2.2                 | 225.8                                           | 500                                         | 500    |
| Se <sup>[4]</sup>                                                                                  | EMImCl/AlCl <sub>3</sub> ,<br>1: 1.3 by mole              | CMK-3<br>modified<br>separators          | 0.01-<br>2.4            | 270                                             | 1000                                        | 500    |
| Se nanowires<br>grown directly<br>on a flexible<br>carbon<br>cloth substrate<br>(Se NWs@CC)<br>[5] | Thiourea-AlCl <sub>3</sub>                                |                                          | 0.01-<br>1.5            | 195                                             | 100                                         | 100    |
| Se@CMK-3 <sup>[6]</sup>                                                                            | EMImCl/AlCl <sub>3</sub> ,<br>1: 1.3 by mole              | Whatman<br>GF/D                          | 0.05-<br>1.5            | 600                                             | 67.5                                        | 9      |
| one-<br>dimensional<br>hollow Se@C<br>nanotube<br>(Se@CT) <sup>[7]</sup>                           | EMImCl/AlCl <sub>3</sub> ,<br>1: 1.3 by mole              | Whatman<br>glass fiber<br>(GF/C)         | 0.5-2.3                 | 162.9                                           | 500                                         | 200    |
| Se nanowires<br>and mesoporous<br>carbon<br>(Se/CMK-3) <sup>[8]</sup>                              | EMImCl-AlCl <sub>3</sub> ,<br>1:1.1 by mole               | Glass<br>fiber<br>(Filtech)              | 1.0-2.3                 | 124                                             | 200                                         | 50     |
| This work<br>(Se@PANI@G)                                                                           | EMImCl/AlCl <sub>3</sub> ,<br>1: 1.3 by mole              | glass fiber<br>(GF/A)                    | 0.4-2.1                 | 164                                             | 200                                         | 160    |

 Table S2 Comparison of electrochemical performances of Se@PANI@G positive electrode

 with previous Se-based positive electrodes.

## References

- 1 T. Zhang, T. Cai, W. Xing, T. Li, B. Liang, H. Hu, L. Zhao, X. Li and Z. Yan, *Energy Storage Mater.*, 2021, **41**, 667-676.
- Y. Kong, A. K. Nanjundan, Y. Liu, H. Song, X. Huang and C. Yu, Small, 2019, 15, 1904310.
- 3 Z. Li, X. Wang, X. Li and W. Zhang, Chem. Eng. J., 2020, 400, 126000.
- 4 H. Lei, S. Jiao, J. Tu, W. L. Song, X. Zhang, M. Wang, S. Li, H. Chen and D. Fang, *Chem. Eng. J.*, 2020, **385**, 123452.
- 5 S. C. Wu, Y. Ai, Y. Z.Chen, K. Wang, T. Y. Yang, H. J. Liao, T. Y. Su, S. Y.Tang, C. W. Chen, D. C. Wu, Y. C. Wang, A. Manikandan, Y. C. Shih, L. Lee and Y. L. Chueh, ACS Appl. Mater. Interfaces, 2020, 12, 27064-27073.
- S. Liu, X. Zhang, S. He, Y. Tang, J. Wang, B. Wang, S. Zhao, H. Su, Y. Ren, L. Zhang, J. Huang, H. Yu, K. Amine, *Nano Energy*, 2019, 66, 104159.
- Z. Li, J. Liu, X. Huo, J. Li and F. Kang, ACS Appl. Mater. Interfaces, 2019, 11, 45709-45716.
- X. Huang, Y. Liu, C. Liu, J. Zhang, O. Nooan and C. Yu, Chem. Sci., 2018, 9, 5178-5182.