Supplementary Information for

Fabrication of porous imidazole polymerized ionic liquids with fast ion diffusing kinetics for super lithiation anode material in lithium-ion batteries

Yeji Wang^a, Gege Yang^a, Fei Jiang^b, Tianpei Qiu^a, Qian Liu^a, Le Zhou^a, Chaofan Yang^a, Junjie Huang^{*a}, Guoliang Dai^{*c}

^a College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China, E-mail: hjj@usx.edu.cn;

^b Mathematic Information College, Shaoxing University, Shaoxing, 312000, P. R. China;

^c School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China, E-mail: daigl@tzc.edu.cn.

Results and Discussion

Figure S1. The EDS images (a) and HRTEM results (b, c) of PILs-Im electrode after long cycling test.

Table S1. Rate capability between PILs-Im in this work and previous organic polymer anode materials in

LIBs.

Material	Charge capacity at low current density [mAh g ⁻¹]	arge capacity at low Charge capacity at high current density current density [mAh g ⁻¹] [mAh g ⁻¹]	
PILs-Im	727.7 at 100 mA g ⁻¹	165.0 at 10 A g ⁻¹	This work
Tp-Azo-COF	623 at 100 mA g ⁻¹	90.76 at 2.4 A g ⁻¹	1
Covalent organic nanosheet	~ 720 at 100 mA g ⁻¹	~ 150 at 1.0 A g ⁻¹	2
Layered functionalized covalent triazine frameworks nanosheet	816 at 100 mA g ⁻¹	186 at 10 A g ⁻¹	3
Layered covalent triazine frameworks	~ 350 at 100 mA g ⁻¹	~ 50 at 10 A g ⁻¹	3
Exfoliated Schiff base network-1	542 at 100 mA g ⁻¹	212 at 5.0 A g ⁻¹	4
Covalent triazine frameworks	1418.6 at 100 mA g ⁻¹	181.8 at 10 A g ⁻¹	5
2D COF polyporphyrin	666 at 200 mA g ⁻¹	195 at 4.0 A g ⁻¹	6
Aromatic imide benzophenone-3,3',4,4'- tetracarboxylimide oligomer	1074 at 42 mA g ⁻¹	58 at 2.1 A g ⁻¹	7
Poly(chalcogenoviologen)s	799 at 50 mA g ⁻¹	252 at 2.0 A g ⁻¹	8

Potential (V vs Li†/Li)	Binding Energy (eV)						
	Imidazole N ⁺	Pyrrole N	Pyridinic N	imidazole C	pyridine C	methylene C	
Pristine PILs-Im	400.4	399.7	398.5	286.3	284.9	284.4	
PILs-Im at 1.0 V	400.3	399.3	398.4	286.2	284.9	284.3	
PILs-Im at 0.1 V	399.7	399.2	398.2	286.0	284.9	284.2	

Table S2. Binding energy of N and C elements in different bonding states.

References

- 1. G. Zhao, Y. Zhang, Z. Gao, H. Li, S. Liu, S. Cai, X. Yang, H. Guo and X. Sun, ACS Energy Letters, 2020, 5, 1022-1031.
- 2. S. Haldar, K. Roy, S. Nandi, D. Chakraborty, D. Puthusseri, Y. Gawli, S. Ogale and R. Vaidhyanathan, *Advanced Energy Materials*, 2018, **8**, 1800140.
- 3. Y. Zhu, X. Chen, Y. Cao, W. Peng, Y. Li, G. Zhang, F. Zhang and X. Fan, *Chemical Communications*, 2019, **55**, 1434-1437.
- 4. Z. Lei, X. Chen, W. Sun, Y. Zhang and Y. Wang, Advanced Energy Materials, 2019, 9, 3.
- 5. F. Jiang, Y. Wang, T. Qiu, Y. Zhang, W. Zhu, C. Yang, J. Huang, Z. Fang and G. Dai, ACS Applied Materials & Interfaces, 2021, 13, 48818-48827.
- 6. H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue, J. Gao, Y. Li, C. Huang, Y. Yi, H. Liu and Y. Li, ACS Applied Materials & Interfaces, 2016, **8**, 5366-5375.
- 7. Y. Wang, Z. Liu, H. Liu, H. Liu, B. Li and S. Guan, *Small*, 2018, **14**, 1704094.
- 8. G. Li, B. Zhang, J. Wang, H. Zhao, W. Ma, L. Xu, W. Zhang, K. Zhou, Y. Du and G. He, *Angewandte Chemie*. *International Ed. in English*, 2019, **131**, 8556-8561.