Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Boosting the Oxygen Reduction Reaction Behaviour of Atomic Fe-N₄ Active Sites

in the Porous Honeycomb-like Carbon via P Heteroatom Doping

Jin Li ^a, Kaicai Fan ^b, Hongliang Jiang ^c, Fenghong Lu ^a, Lixiu Cui ^a, Bin Li ^b, Qi

Zhang ^a, Gao-Chao Fan ^{a, *}, Lingbo Zong ^{a, *}, Lei Wang ^{a,d, *}

a: Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
b: College of Materials Science and Engineering, Qingdao University of Science and
Technology, Qingdao 266042, China

c: Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

d: Shandong Engineering Research Centre of Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

* Corresponding authors:

E-mail addresses: gcfan@qust.edu.cn; lingbozong@qust.edu.cn; inorchemwl@126.com

Fig. S1. The XRD pattern of Fe-N₄/NP-PHC.

Fig. S2. SEM image of Fe-N₄/NP-PHC.

Fig. S3. TEM image of Fe-N₄/NP-PHC.

Fig. S4. N_2 adsorption-desorption isotherms and the corresponding pore distribution of Fe-N₄/NP-PHC.

Fig. S5. SEM images of Fe-M-CA.

Fig. S6. TEM images of Fe-M-CA.

Fig. S7. XRD pattern of Fe-M-CA.

Fig. S8. The survey XPS spectra of Fe-N₄/NP-PHC.

Fig. S9. EXAFS fitting results of Fe-N₄/NP-PHC at k space.

Fig. S10. (a) SEM and (b) TEM (c) HAADF-STEM and (d) elemental mapping images of NP-PHC.

Fig. S11. CV curves of Fe-N₄/NP-PHC, Pt/C and NP-PHC.

Fig. S12. Kinetic current density (j_k) of Fe-N₄/NP-PHC, Pt/C and NP-PHC at 0.85 V.

Fig. S13. Rotating ring disk electrode polarization curves of Fe-N₄/NP-PHC and Pt/C.

Fig. S14. (a) ORR polarization curves and (b) corresponding Tafel plots of Fe-N₄/NP-PHC and Fe-N₄/N-PHC.

Fig. S15. ORR polarization curves before and after 3000 potential cycles for Fe- $N_4/NP\text{-}PHC$ catalyst.

Fig. S16. SEM of Fe-N₄/NP-PHC after ORR durability measurement.

Fig. S17. TEM of Fe-N₄/NP-PHC after ORR durability measurement.

Fig. S18. (a) HAADF-STEM and (b) mapping images of Fe-N₄/NP-PHC after ORR durability measurement.

Fig. S19. XPS of Fe-N₄/NP-PHC after ORR durability measurement.

Fig. S20. XRD spectra of Fe-N₄/NP-PHC after stability test.

Fig. S21. Raman spectra of Fe-N₄/NP-PHC after stability test.

Samples	Shell	CN	R(Å)	σ ² (Å ²)	ΔE_0 (eV)	R-factor
Fe-N ₄ /NP-PHC	Fe-N	4.1	2.01	0.006	-4.58	0.012

Table S1. Structural parameters extracted from EXAFS data fitting of $(S_0^2 = 1)$

CN is the coordination number; R is interatomic distance; σ^2 is Debye-Waller factor (a measure of thermal and static disorder); ΔE_0 : edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model); R factor is used to evaluate the goodness of the fitting.

Catalyst	Eonset(V vs.RHE)	E _{1/2} (V vs.RHE)	References
Fe-N ₄ /NP-PHC	1.0 V	0.89V	This work
Ni-N ₄	0.97 V	0.86 V	[1]
Fe/OES	1.0 V	0.85 V	[2]
FePc&rGO	0.98 V	0.89 V	[3]
Co-SAC/NC	1.019 V	0.884 V	[4]
Co-N-C SA/HCF	0.928 V	0.801 V	[5]
Fe ₃ C	0.987 V	0.855 V	[6]
Co-N ₃ C ₁	0.904 V	0.824 V	[7]
FeSAs/PTF-600	1.01 V	0.87 V	[8]
CNT@SAC-Co/NCP		0.87 V	[9]
SACe-N/PC	1.0 V	0.88 V	[10]
NBCNT-10	0.958 V	0.82 V	[11]
CoFe/S-N-C		0.855 V	[12]
WN-Ni@N,P-CNT	1.02 V	0.84 V	[13]
Co,Nb-MoS ₂ /TiO ₂	0.96 V	0.86 V	[14]
3DOM P-Co ₃ O _{4-δ}	0.99 V	0.82 V	[15]
Co ₉ S ₈ @N, S–C	1.03 V	0.887 V	[16]
PdNi/Ni@N-C	1.01 V	0.89 V	[17]
Fe-doped MOF CuCoSe@HCNF		0.756 V	[18]
Co/MnO@NC	0.96 V	0.83 V	[19]

 Table S2. Performance of the reported state-of-the-art ORR SACs in 0.1 M KOH.

Table S3. Calculated ΔG for 4e⁻ ORR pathway on Fe-N₄ and Fe-N₄-P at U = 0 V vs. RHE.

$\mathbf{U} = 0 \mathbf{V}$	O ₂ (eV)	OOH* (eV)	O* (eV)	OH* (eV)	OH ⁻ (eV)
Fe-N ₄ /NP-CM	4.92	3.39978	1.17276	0.1461	0.00
Fe-N ₄ /N-CM	4.92	3.2197	1.18296	0.05421	0.00

Table S4. Calculated ΔG for 4e⁻ ORR pathway on Fe-N₄ and Fe-N₄-P at U = 1.23 V (vs. RHE).

U = 1.23 V	O ₂ (eV)	OOH* (eV)	O* (eV)	OH* (eV)	OH ⁻ (eV)
Fe-N ₄ /NP-CM	0	-0.29022	-1.28724	-1.0839	0.00
Fe-N ₄ /N-CM	0	-0.4703	-1.27704	-1.17579	0.00

Catalyst	Peak power density (mW cm ⁻²)	Charge/discha rge voltage gap (V) at 10mA cm ⁻²	Battery stability	References
Fe-N ₄ /NP-PHC	200	1.0	20 min/cycle for 100 h	This work
BCN/rGO-Co	157	1.235	for 200 h	[20]
Fe/N-G-SAC	120	0.78	1 h/cycle for 240 h	[21]
Ni ₃ Fe/Co-N-C	68	0.78	for 65 h	[22]
Pt@CoS2-NrGO	114	0.88	for 55 h	[23]
CoNP-PTCOF	53	1.2	10 min/cycle for 120 h	[24]
3DOM Co3O4		0.96	2 h/cycle for 400 h	[25]
Cop@CoNC	188.8	0.80	for 360 h 10 min	[26]
CoNP-s-IMCOF	48	1.1	cycle for 157h 20	[27]
P-CoO@PWC-2	73	0.83	min/cycle for 233.3 h	[28]
Fe-Co ₂ P@Fe-N-C	81	0.73	min/cycle for 283.3 h	[29]
NiFe@C@Co CNFs	130	0.73	20 min/cycle for 400 h	[30]

 Table S5. Performance of rechargeable Zn-air batteries assembled using SACs.

References

- [1] Z. Cai, P. Du, W. Liang, H. Zhang, P. Wu, C. Cai, Z. Yan, J. Mater. Chem. A, 2020, 8, 15012-15022.
- [2] C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu, Q. Xu, Angew. Chem. Int. Ed., 2020, 59, 7384-7389.
- [3] Z.-y. Mei, S. Cai, G. Zhao, Q. Jing, X. Sheng, J. Jiang, H. Guo, Energy Storage Mater., 2022, 50, 12-20.
- [4] P. Rao, J.M. Luo, D.X. Wu, J. Li, Q. Chen, P.L. Deng, Y.J. Shen, X.L. Tian, Energy & Environ. Mater. doi: 10.1002/eem2.12371
- [5] J. Lei, H. Liu, D. Yin, L. Zhou, J.A. Liu, Q. Chen, X. Cui, R. He, T. Duan, W. Zhu, Small, 2020, 16, 1905920-1905929.
- [6] M.M. Mohideen, A. V. Radhamani, S. Ramakrishna, Y. Wei, Y. Liu, J. Energy Chem., 2022, 69, 466-489.
- [7] X. Hai, X. Zhao, N. Guo, C. Yao, C. Chen, W. Liu, Y. Du, H. Yan, J. Li, Z. Chen,
- X. Li, Z. Li, H. Xu, P. Lyu, J. Zhang, M. Lin, C. Su, S.J. Pennycook, C. Zhang, S. Xi,
- J. Lu, ACS Catal., 2020, 10, 5862-5870.
- [8] Y. Zhou, G. Chen, Q. Wang, D. Wang, X. Tao, T. Zhang, X. Feng, K. Müllen, Adv. Funct. Mater., 2021, 31, 2102420-2102428.
- [9] J.C. Li, Y. Meng, L. Zhang, G. Li, Z. Shi, P.X. Hou, C. Liu, H.M. Cheng, M. Shao, Adv. Funct. Mater., 2021, 31, 2103360-2103368.
- [10] J.C. Li, X. Qin, F. Xiao, C. Liang, M. Xu, Y. Meng, E. Sarnello, L. Fang, T. Li,
- S. Ding, Z. Lyu, S. Zhu, X. Pan, P.X. Hou, C. Liu, Y. Lin, M. Shao, Nano Lett., 2021,

21, 4508-4515.

- [11] P. Wei, X. Li, Z. He, X. Sun, Q. Liang, Z. Wang, C. Fang, Q. Li, H. Yang, J. Han,Y. Huang, Chem. Eng., 2021, 422, 130134-130143.
- [12] G. Li, Y. Tang, T. Fu, Y. Xiang, Z. Xiong, Y. Si, C. Guo, Z. Jiang, Chem. Eng., 2022, 429, 132174-132181.
- [13] Q. Zhang, F. Luo, X. Long, X. Yu, K. Qu, Z. Yang, Appl. Catal. B Environ., 2021,298, 120511-120519.
- [14] D.C. Nguyen, T.L. Luyen Doan, S. Prabhakaran, D.T. Tran, D.H. Kim, J.H. Lee,N.H. Kim, Nano Energy, 2021, 82, 105750-105764.
- [15] D. Wang, Y.-P. Deng, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Y. Hu, M. Shakouri,
- X. Wang, Z. Chen, Energy Storage Mater., 2021, 41, 427-435.
- [16] D. Lyu, S. Yao, A. Ali, Z.Q. Tian, P. Tsiakaras, P.K. Shen, Adv. Energy Mater.,2021, 11, 2101249-2101261.
- [17] Z. Li, H. Li, M. Li, J. Hu, Y. Liu, D. Sun, G. Fu, Y. Tang, Energy Storage Mater.,2021, 42, 118-128.
- [18] S.-H. Chae, A. Muthurasu, T. Kim, J.S. Kim, M.-S. Khil, M. Lee, H. Kim, J.Y.Lee, H.Y. Kim, Appl. Catal. B Environ., 2021, 293, 120209-120220.
- [19] Y. Niu, X. Teng, S. Gong, X. Liu, M. Xu, Z. Chen, Energy Storage Mater., 2021,43, 42-52.
- [20] L. Cao, Y. Wang, Q. Zhu, L.L. Fan, Y. Wu, Z.H. Li, S.X. Xiong, F. Gu, ACS Appl. Mater. Interfaces, 2022, 14, 17249–17258.
- [21] M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge, J. Zhu, Y. Wang, X. Zhao, Z. Chen, Adv.

Mater., 2020, 32, 2004900-2004908.

- [22] J. Tan, T. Thomas, J. Liu, L. Yang, L. Pan, R. Cao, H. Shen, J. Wang, J. Liu, M.Yang, Chem. Eng., 2020, 395, 125151-125177.
- [23] N. Logeshwaran, S. Ramakrishnan, S.S. Chandrasekaran, M. Vinothkannan, A.R.Kim, S. Sengodan, D.B. Velusamy, P. Varadhan, J.-H. He, D.J. Yoo, Appl. Catal. BEnviron., 2021, 297, 120405-120416.
- [24] J.H. Park, C.H. Lee, J.M. Ju, J.H. Lee, J. Seol, S.U. Lee, J.H. Kim, Adv. Funct. Mater., 2021, 31, 2101727-2101736.
- [25] M.G. Park, D.U. Lee, M.H. Seo, Z.P. Cano, Z. Chen, Small, 2016, 12, 2707-2714.
- [26] H. Yang, S.A. Gao, D.W. Rao, X.H. Yan, Energy Storage Mater., 2022, 46, 553-562
- [27] J.-M. Ju, C. H. Lee, J. Hyun Park, J.-H. Lee, H.J. Lee, J.-H. Shin, S.-Y. Kwak, S.
- U. Lee, J.-H. Kim, ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.2c04194
- [28] H. Liu, Y. Liu, S. Mehdi, X. Wu, T. Liu, B. Zhou, P. Zhang, J. Jiang, B. Li, Adv.Sci., 2021, 8, 2101314-2101325.
- [29] X.W. Lv, W.S. Xu, W.W. Tian, H.Y. Wang, Z.Y. Yuan, Small, 2021, 17, 2101856-2101868.
- [30] X. Chen, J. Pu, X.H. Hu, Y.C. Yao, Y.B. Dou, J.J. Jiang, W.J. Zhang, Small, 2022, 18, 2200578-2200589.