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Supplementary Figures: 
 

 

Figure S1. Rietveld refinements of ex-situ samples after 7 (top) and 15 (bottom) cycles using an hkl-dependent model. 
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Figure S2. Comparison between the cluster occurrences in the models used in this study and the probabilistic limit.  
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Figure S3. Partial atomic g(r)s of the DRS (top) and layered (bottom) models for a single refinement (a) and the sum of 5 (b). 
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Figure S4. PDF fit of the disordered supercell showing the whole r-range used in the refinement.  

 

Figure S5. Representation of the two more predominant types of tetrahedral sites LiM3 (red) and Li3M (blue) in the layered 
model. Green, purple and blue denote Li, Mn and Ti, respectively. 
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Figure S6. LMTO evolution with cycling characterized by HERFD-XANES. From left to right: electrochemical performance and 
contour plots of the magnified pre-edge region and HERFD-XANES. Bottom figures show superimposed spectra at 
highlighted potentials.  

 

Figure S7. LMTO charge evolution with cycling characterized by operando XES. From left to right: electrochemical 

performance and contour plots of kβ′, kβ1,3, kβ′′ and kβ2,5 transitions. 
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Figure S8. Cation vacancy concentration as a function of delithiation for Li-rich Li1+xM1-xO2 with (green) and without (blue) 
undergoing densification.  

Lattice densification during delithiation in DRS decreases the concentration of cation vacancies in the 

material in the charged state following the reaction: 

Li1+xMn1-xO2 → □y/2Li1+x-yM1-xO2-y/2 + y/2 Li2O 

Note Li2O is not detected as a secondary phase, as it forms Li+ and oxide ions. The oxide ions have 

been reported to undergo redox to form molecular oxygen which can either be released at the surface 

of the particles or trapped in ‘cavities’ resulting from the clustering of cation vacancies.[1–3] Other 

hypothesis include the formation of peroxides that can be stabilized by the liquid electrolyte at the 

surface of the cathode material.[4] 

Lattice densification is not an irreversible process in DRS.[5] The O2 molecules are cleaved on discharge 

reforming O2−, this drives in turn the migration of transition metals into new vacancies and the 

reincorporation of Li+-ions on discharge. During such lattice redistribution, layered domains continue 

to grow as shown in Figure 2.c. M3□ sites within layered domains could become disconnected from 

the pathways for Li+-reincorporation rendering cation vacancies that can no longer be accessed by Li+.  

The trapping of cation vacancies in the layered domains could explain the irreversible oxidation to 

Mn4+ during the first charge observed by XES.   
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Figure S9. Operando LMTO evolution by total scattering. From left to right: electrochemical performance, Bragg and PDF 
data. The data at the start, end and potential limits is highlighted by filled circles and dashed lines.  
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Figure S10. Rietveld refinements of the in-situ sample at t=0h showing the DRIX cell and Carbon backgrounds included in the 
fit..  
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Figure S11. Rietveld refinements of the in-situ sample at t=37h showing the DRIX cell and Carbon backgrounds included in 
the fit. 
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