Supporting Information

Topotactic BI₃-assisted borodization: Synthesis and electrocatalysis applications of transition metal borides

Katherine E. Woo,^{a,b,#} Seongyoung Kong,^{a,b,#} Wei Chen,^{c,#} Tsz Hin Chang,^d Gayatri Viswanathan,^{a,b} Aida M. Díez,^e Viviana Sousa,^e Yury V. Kolen'ko,^e Oleg I. Lebedev,^f Marta Costa Figueiredo,^{c,*} Kirill Kovnir ^{a,b,*}

^a Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

^b Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA

^c Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands

^d Department of Chemistry, University of California, Davis, Davis, California, 95616, USA

^e Nanochemistry Research Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal

^f Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 14050 Caen, France

These authors contributed equally

* Corresponding authors: <u>m.c.costa.figueiredo@tue.nl</u>, <u>kovnir@iastate.edu</u>

Figure S1. Powder XRD patterns (red) of reactions targeting nickel boride (Ni₃B) using different Ni:BI₃ ratios as detailed in **Table 2**. The calculated pattern (black) was assigned as the major phase of the product. The most intense peak of the admixture phase is indicated with corresponding composition.

Figure S2. Calculated (black) and experimental (red) powder XRD patterns for reactions targeting LaB₆ and Ru₇B₃ with given ratios of *M*:BI₃. Majority of the unassigned peaks in Ru₇B₃ correspond to unreacted Ru metal.

Figure S3. Calculated (black) powder XRD pattern of CrB and experimental pattern (red) synthesized by given *M*:BI₃ ratio.

Figure S4. EDX spectrum of Ni₃B foam after washing with water. No iodine was detected. B- K_{α} peak overlaps with that of C.

Figure S5. Selected *in situ* powder XRD patterns of the Ni and BI_3 reaction at the representative temperature regions and calculated XRD patterns of Ni, Ni₄B₃ Ni₂B and NiI₂. A trend of peak shifts is due to thermal expansion of the unit cell.

Figure S6. SEM backscattered electron image of Ni₃B foam with morphology lacking pores.

Figure S7. SEM backscattered electron image and EDX spectrum of Ni_6BSi_2 crystal on the Ni_3B form. B- K_{α} peak overlaps with that of C.

Figure S8. Calculated (black) powder XRD pattern of Ni_3B and experimental (red) pattern of $Ni_{2.1(1)}Co_{0.9}B$.

Figure S9. EDX spectrum of ternary Ni_{2.1(1)}Co_{0.9}B. B- K_{α} peak overlaps with that of C.

Figure S10. Tafel plots for IrO_2 and IrO_2/Ni_3B catalysts with different compositions. Data obtained in N_2 saturated 0.5 M H₂SO₄. (mass loading = 0.25 mg/cm²).

Figure S11. Contact angle study showing water droplet on the surface of (a) Ni foam and (b) Ni₃B foam.

Figure S12. Cyclic voltammogram of IrO₂ (loading = 1 mg/cm^2) and Ni₃B (loading = 2 mg/cm^2) in N₂ saturated 0.5 M H₂SO₄. Scan rate = 50 mv/s, electrode rotating rate = 1600 rpm. The initial three cycles are given without *iR* compensation. For better comparison, the loading of Ni₃B has been doubled and the corresponding current has been multiplied by 10.

Table S1. Overpotentials for pure IrO₂ and IrO₂/Ni₃B with different compositions to generate $j_{ECSA} = 0.4$ mA/cm² (mass loading = 0.25 mg/cm²).

	E/V @ 0.4mA/cm ²	Overpotential/mV
IrO ₂ 100%	1.67	440
Ni ₃ B 25% /IrO ₂ 75%	1.65	420
Ni ₃ B 50% /IrO ₂ 50%	1.60	370
Ni ₃ B 75% /IrO ₂ 25%	1.63	400