Supporting Information for

Revealing and Magnifying Interfacial Effects between Ruthenium and Carbon Supports for Efficient Hydrogen Evolution

Yongjun Jiang¹, Ting-Wei Huang², Hsuan-Lien Chou², Lihui Zhou¹,

Sheng-Wei Lee², Kuan-Wen Wang^{2,3, *}, Sheng Dai^{1,*}

¹ Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China

² Institute of Materials Science and Engineering, National Central University, Taoyuan
320, Taiwan

³ Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

* Corresponding Authors: kuanwen.wang@gmail.com (K.-W.W.)

shengdai@ecust.edu.cn (S. D.)

Sample	Surface composition (at%)						Ru composition (%)		
	С	0	Ν	Ru	Zn	S	Ru ⁰	Ru ⁴⁺	
Ru/AC	75.0	14.2	0.3	10.5	-	-	31.1	60.9	
Ru/PC	73.5	12.3	2.4	11.1	0.1	0.6	48.5	51.5	
Ru/ZC	76.8	10.1	2.0	11.0	0.1	-	77.2	22.8	

Table S1. Surface compositions of various Ru catalysts characterized by XPS.

Table S2. Fitting results of the Raman spectra with Gaussian-Lorentzian peaks.

Sample	P (%)	D (%)	A (%)	G (%)	I _D /I _G
Ru/AC	1.0	62.2	11.4	25.4	1.2
Ru/PC	2.0	44.5	46.5	7.0	3.4
Ru/ZC	7.3	53.6	27.1	12.0	2.2

Commle		Ru K-edge	
Sample	Bond pair	CN ^a	R (Å)
	Ru-C	1.97	2.089
Ru/AC	Ru-O	2.05	1.995
	Ru-Ru	4.71	2.678
	Ru-C	1.87	2.089
Ru/PC	Ru-O	2.09	1.995
	Ru-Ru	3.61	2.677
D ₁₁ /7 <i>C</i>	Ru-C	2.26	2.061
KU/ZU	Ru-Ru	2.82	2.651

Table S3. Structure parameters of various Ru catalysts from EXAFS fitting.

^a coordination number

a 1		Overpot	ential (mV)	Tafel Slope (mV/dec)		
Sample	$ECSA(m^2/g) =$	Initial	After ADT	Initial	After ADT	
Ru/AC	32	109	122	136	179	
Ru/PC	83	72	82	114	147	
Ru/ZC	128	38	49	110	115	
Ru/ZC-E50	130	29	35	82	92	
Ru/ZC-E100	110	36	39	92	95	

Table S4. The HER performance of Ru/C catalysts in 1.0 M KOH.

	Ru Content (wt%)			
_	Electrolytes	Catalysts		
Ru/ZC	/	4.0		
Ru/ZC-E50	0.1	3.9		
Ru/ZC-E100	0.3	3.7		

Table S5. Ru contents in both electrolytes and catalysts for initial Ru/ZC, Ru/ZC-E50, and Ru/ZC-E100.

		Tafalalara					
Catalyst	η ₁₀ (mV)	(mV/dec)	Decay of η_{10} (mV)	Decay of ^a <i>j</i> (%)	Duration	Ref.	
Ru/ZC	38	110	11		5k cycles		
Ru/ZC-E50	29	82	6	-	5k cycles	This work	
Ru-CN-RGO	45	40	5	-	15 hours	40	
Ru@NG-4	40	76	-	5	5k cycles	41	
RuSAs-Ni ₂ P	57	75	-	-	2k cycles	42	
Ni@Ru/CNS-10%	20	87	8	-	3k cycles	43	
Ru-ZIF-900	52	78	-	4	8 hours	27	
Ru@WNO-C	24	40	46	-	10k cycles	44	
Ru@Co-NC-800	23	58	-	10	10 hours	28	
Ru/rGO-V	60	40	-	-	-	45	
Ru-Cr ₂ O ₃ /NG	47	39	-	-	20k cycles	46	
P-Ru/C	31	105	-	-	1k cycles	29	
Ru ₃ @NCF	181	73	-	6	8.3 hours	47	

Table S6. Comparison of recently reported Ru catalysts in 1.0 M KOH.

^a *j*: current density.

Figure S1. Cu_{UPD} scanning curves of Ru/AC, Ru/PC, and Ru/ZC.

Figure S2. HAADF-STEM images of Ru/AC, Ru/PC, and Ru/ZC after ADT.

Figure S3. CV curves before and after ADT for Ru/AC, Ru/PC, and Ru/ZC.

Figure S4. Cu_{UPD} scanning curves of Ru/ZC, Ru/ZC-50, and Ru/ZC-100.

Figure S5. HAADF-STEM images of Ru/ZC, Ru/ZC-E50, and Ru/ZC-E100 after ADT.

Figure S6. CV curves before and after ADT for Ru/ZC, Ru/ZC-E50, and Ru/ZC-E100.