Stabilization of ferrielectric phase in NaNbO$_3$-based lead-free ceramics for wide-temperature large electrocaloric effect

Jie Wu a,b,c, Hui Liu a,c, He Qi a,b,c,*, Botao Gao a,b, Liang Chen a,b, Wenchao Li a,b, Shiqing Deng a,c, and Jun Chen a,b,c,*

a Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.

b Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

c School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

*Corresponding authors: qiheustb@ustb.edu.cn; junchen@ustb.edu.cn

Jie Wu and Hui Liu contributed equally to this work.
Fig. S1 Temperature dependent dielectric permittivity and dielectric loss at the frequency of 1 kHz-1 MHz for the NN-CZ ceramics. The inset is the evolution of T_f with changing CZ content.

Fig. S2 Temperature-dependent XRD pattern of the NN sample.
Fig. S3 Temperature-dependent XRD pattern of the NN-0.01CZ sample.

Fig. S4 Temperature-dependent XRD pattern of the NN-0.02CZ sample.
Fig. S5 Temperature-dependent synchrotron XRD pattern of the NN-0.02CZ sample.

Fig. S6. Temperature-dependent Raman spectra of NN sample.
Fig. S7. Temperature-dependent Raman spectra of NN-0.02CZ sample.

Fig. S8. The corresponding intensity profiles of (1, 1-q, 1) superlattice reflections and (111) basic reflections for NN-xCZ ceramics.
Fig. S9 The proposed configuration for $q=1/4$ phase of NN ceramic.

Fig. S10 Temperature-dependent P-E hysteresis loops at 10 Hz of the NN-0.05CZ sample.
Fig. S11 Temperature dependence of the specific heat curve for the NN-0.05CZ ceramic.
The ECE (a) ΔS and (b) ΔT for the NN-0.05CZ sample under different applied fields, which exhibits excellent ECE compared with other lead-free ceramics.1-7
Fig. S13 The temperature dependent recoverable energy storage density W_{rec} and efficiency η of the NN-0.05CZ ceramic.

W_{rec} and η can be calculated as follows:

$$W_{\text{rec}} = \int_{P_{\text{r}}}^{P_{\text{max}}} E \, dP$$

$$W_{\text{total}} = \int_{0}^{P_{\text{max}}} E \, dP$$

$$\eta = \frac{W_{\text{rec}}}{W_{\text{total}}}$$

where P_{max}, P_{r}, E and W_{total} are the maximum polarization, remanent polarization, applied electric field and total energy density.
References