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Experimental Section

Materials Characterization

Scanning electron microscope (SEM, ZEISS Gemini 500) and transmission electron microscope 

(TEM, Hitachi HT 7700) were used to examine morphology and structure of samples. High-

resolution TEM (HRTEM) and high angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) were managed on JEOL-2100F. The crystal structure and surface 

state of samples were investigated by X-ray diffractometer (XRD, PANalytical X’Pert) and X-ray 

photoelectron spectroscopy (XPS, ESCALAB MK II spectrometer), respectively.

Electrochemical investigation 

Electrochemical measurements were performed by CHI 760E electrochemical workstation in a 

three-electrode cell. MOR measurements were carried out in 1 M KOH + 1 M CH3OH using 

Ag/AgCl electrode (KCl saturated) and Pt wire as reference electrode and counter electrode, 

respectively. HER measurements employed a graphite rod as a counter electrode and Hg/HgO 

electrode as a reference electrode in 1 M KOH. To obtain working electrode, catalyst ink was 

prepared by adding 5 mg of catalyst in 0.6 mL of water, 0.3 mL of ethanol and 0.1 mL of Nafion 

(0.5 wt%), and then 2 μL of catalyst ink was dropped onto a polished glassy carbon electrode (GCE) 

for drying at 50 °C. Linear sweep voltammetry (LSV) is carried out at the scan rate of 5 mV s-1. 

Prior to each electrochemical test, the solutions were purged with nitrogen for 30 min. All the HER 

polarization curves were based on iR correction using the equation: Ecorrected = Emeasured – iR, where i 

is the current and R is the uncompensated electrolyte ohmic resistance measured by electrochemical 

impedance spectroscopy (EIS), respectively. Tafel slope was acquired from fitted LSV curves 

according to the Tafel equation (η = a×log(j)+b, where η is overpotential, a is Tafel slope, and j is 
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current density). Chronopotentiometry (V–t) was conducted to estimate catalyst durability. EIS was 

carried out in the range of 100 mHz to 100 kHz at 0.82 and -0.2 V for MOR and HER, respectively. 

Electrochemical active surface area (ECSA) was calculated from cyclic voltammograms (CVs) 

based on the equation (ECSA = Q/(m×420), where m is Pd mass loading, 420 μC cm-2 is reduction 

charge of Pd oxide monolayer on the Pd surface, and Q is acquired by integrating the reduction 

charge of the Pd oxide layer). Catalyst inks were doped on carbon paper (CP) with a mass loading 

of 0.5 mg cm-2 for the two-electrode HER-MOR system. 
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Fig. S1 EDX spectrum of the Au@PdRu RNs.

Fig. S2 SEM images of the prepared samples with different dosages of KBr under the typical 

synthesis conditions: (a) 0 mg, (b) 40 mg (c) 80 mg and (d) 160 mg.
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Fig. S3 SEM images of the prepared samples with different dosages of surfactant under the typical 

synthesis conditions: (a) F127, (b) CTAC and (c) PVP.

Fig. S4 SEM images of the prepared samples with different dosages of HCl under the typical 

synthesis conditions: (a) 0 mL and (b) 0.1 mL.
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Fig. S5 (a) CV curves of the different catalysts in 1 M KOH solution at a scan rate of 50 mV s−1 and 

(b) corresponding ECSA of different catalysts.

Fig. S6 Chronoamperometric curves of samples at −0.25 V.
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Fig. S7 Chronopotentiometry curve for the Au@PdRu RNs at a constant cathodic current density of 

10 mA cm-2 in 1 M KOH electrolyte for 20 h. 

Fig. S8 HER polarization curves for the Au@PdRu RNs in 1 M KOH electrolyte without and with 

1 M CH3OH.
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Fig. S9 EIS spectra of various electrocatalysts in 1 M KOH with and without 1 M CH3OH under 

different applied potentials of (a) 0.82 V (vs. RHE) and (b) -0.2 V (vs. RHE), respectively.

Fig. S10 TEM image of the Au@PdRu RNs after catalytic stability test.
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Table S1. The mass activity of Au@PdRu RNs compared with several recently reported MOR 

electrocatalysts. 

Catalyst Condition Scan rate
(mV s-1)

Mass activity
(A mg-1

Pd) Ref.

Au@PdRu RNs 1 M KOH + 1 M CH3OH 50 1.56 This work

Bowl-like PdCu 1 M KOH + 1 M CH3OH 50 1.46 1

PdCuCo/rGO 1 M KOH + 1 M CH3OH 50 1.06 2

Pd1Cu5 1 M KOH + 1 M CH3OH 50 1.09 3

PdCu/VrGO 1 M KOH + 1 M CH3OH 50 0.76 4

Pd2P1 1 M KOH + 1 M CH3OH 50 0.87 5

Pd-PdO PNTs 1 M KOH + 1 M CH3OH 50 1.11 6

Pd-CeO2/SCS 1 M KOH + 1 M CH3OH 50 0.90 7

Pd−Co J-NWs 1 M KOH + 1 M CH3OH 50 1.21 8
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Table S2. The cell voltage of Au@PdRu RNs||Au@PdRu RNs methanol electrolyzer compared 

with several small molecule oxidation assisted water electrolysis. 

Catalyst Substrate 
molecule

Cell voltage 
(V)

Stability
(h) Ref.

Au@PdRu RNs methanol 0.88 20 This work

NC/Ni-Mo-N/NF glycerol 1.38 12 9

Ni2P nanomeshes benzylamine 1.41 40 10

Co(OH)2@HOS/CP methanol 1.49 20 11

Fe2P films glucose 1.22 24 12

Co-Ni alloy glucose 1.39 12 13

Pt-NP/NiO-NS methanol 1.39 14 14
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